Research Article
BibTex RIS Cite

Investigation of the Prevalence of Rotavirus Infection in Calves using Polyacrylamide Gel Electrophoresis

Year 2024, Volume: 35 Issue: 3, 168 - 172, 28.11.2024
https://doi.org/10.36483/vanvetj.1513086

Abstract

Bovine rotaviruses cause loss of calves and cause great financial losses to breeders. Bovine rotaviruses, which are classified in the Reovirales order, Sedoreoviridae family and Rotavirus genus, are mostly classified as G and P genotypes according to VP7 and VP4 gene regions. In addition, 10 different species (group A-J) have been identified according to genetic and antigenic properties of another major antigen, VP6. Group A rotaviruses are the most common cause of diarrhea in calves, while group B and C infections are also known. For the protection of calves, rotavirus screening should be performed on a herd basis and the infection status of cattle should be revealed. For this purpose, stool samples of 100 calves with diarrhea symptoms in the inventory of Ataturk University, Faculty of Veterinary Medicine, Department of Virology were used. Polyacrylamide gel electrophoresis (PAGE), which allows the examination of segments of the genome, was used to check for the presence of the virus. Nucleic acid extraction was performed on the stool samples before electrophoresis and then extracts were loaded into the prepared polyacrylamide gel and run. The samples were stained with silver nitrate stain, segment patterns were determined, and the presence of rotavirus was analyzed. While 27 of the analyzed samples were positive, 5 samples were suspicious, and 68 samples were negative. The segment pattern of the positive samples was compatible with group A and all of them were classified in this group. Although they were in the same group, it was determined that the positive samples had 3 different electrophoretypes. As a result, it was determined that rotaviruses still have an important role in the etiology of calf diarrhea. Besides, the detected rotaviruses showed variation, although they were in group A, and breeders in the region should pay attention to control and hygiene measures.

Ethical Statement

Atatürk Üniversitesi Hayvan Deneyleri Yerel Etik Kurulu’ndan 19/02/2024 tarihli ve 2024/04-sayılı izin alınarak yapılmıştır.

Supporting Institution

Bu araştırma Atatürk Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından “THD-2021-9090” nolu proje olarak desteklenmiştir.

Project Number

THD-2021-9090

References

  • Aksoy E, Azkur AK (2023). Genome characterization of a Turkish bovine rotavirus field isolate by shotgun metagenomics. Arch Virol, 168 (6), 159.
  • Al M, Balıkçı E (2012). Neonatal ishalli buzağılarda rotavirus, coronavirus, E. coli K99 ve Cryptosporidium parvum'un hızlı test kitleri ile teşhisi ve enteropatojen ile maternal immünite ilişkisi. Fırat Üniv Sağ Bil Vet Derg, 26(2), 73-78.
  • Alkan F, Ozkul A, Oguzoglu TC et al. (2010). Distribution of G (VP7) and P (VP4) genotypes of group A bovine rotaviruses from Turkish calves with diarrhea, 1997-2008. Vet Microbiol, 141 (3-4), 231-237.
  • Alkan F, Timurkan MÖ, Karayel İ (2015). Kuzey Kıbrıs Türk Cumhuriyeti’nde ishalli buzağılarda grup a rotavirus tespiti ve moleküler karakterizasyonu. Kafkas Üniv Vet Fak Derg, 21 (1), 127-130.
  • Ates O, Yesilbag K (2023). Characterization of bovine rotavirus isolates from diarrheic calves in Türkiye. Mol Biol Rep, 50 (4), 3063-3071.
  • Aydın H, Timurkan MO (2018). Buzağı ishallerinde Coronavirusun nukleoprotein gen ve rotavirusun VP7/VP4 gen bölgelerinin kısmi sekansı ve filogenetik analizi. Atatürk Üniv Vet Bil Derg, 13 (2), 211-218.
  • Ayolabi CI, Ojo DA, Armah GE (2013). Electropherotypes and G-types of group A rotaviruses detected in children with diarrhea in Lagos. ISRN Virol, 2013 (1), 79-84.
  • Ayub A, Unicomb L, Bingnan F, Hossain A (1993). Molecular heterogeneity of human group A rotavirus in rural Bangladesh as determined by electrophoresis of genomic ribonucleic acid, Trop Med, 35 (2), 53–63.
  • Bányai K, Kemenesi G, Budinski I et al. (2017). Candidate new rotavirus species in Schreiber's bats, Serbia. Infect Genet Evol, 48 (2017), 19-26.
  • Biryahwaho B, Hundley F, Desselberger U (1987). Bovine rotavirus with rearranged genome reassorts with human rotavirus. Arch Virol, 96 (3), 257-264.
  • Bukrinskaia AG, Sharova NK, Sergeev OV, Vasil'ev BI, Ten NL (1990). The RNA electrophoretypes of the rotaviruses circulating in Moscow and Leningrad in the winter of 1987-1988. Vopr Virusol, 35 (3), 216-218.
  • Bulut O, Uyunmaz Saklı G, Hasöksüz M et al. (2020). Comparison of reverse-transcriptase polymerase chain reaction (RT-PCR) and rapid test for the detection of bovine rotavirus and bovine coronavirus in anatolian water buffaloes. Eurasian J Vet Sci, 36 (3), 159-165.
  • Cabalar M, Boynukara B, Gülhan T, Ekin İH (2001). Prevalence of rotavirus, Escherichia coli K99 and O157: H7 in healthy dairy cattle herds in Van, Turkey. Turk J Vet Anim Sci, 25 (2), 191-196.
  • Carossino M, Vissani MA, Barrandeguy ME, Balasuriya UB, Parreño V (2024). Equine rotavirus A under the one health lens: potential impacts on public health. Viruses, 16 (1), 130.
  • Chen J, Li D, Xu Y et al. (2023). Establishment and application of multiplex droplet digital polymerase chain reaction assay for bovine enterovirus, bovine coronavirus, and bovine rotavirus. Front Vet Sci, 10, 1157900.
  • da Costa Mendes VM, de Beer M, Peenze I, Steele AD (1993). Molecular epidemiology and subgroup analysis of bovine group A rotaviruses associated with diarrhea in South African calves. J Clin Microbiol, 31 (12), 3333-3335.
  • Ghosh S, Taniguchi K, Aida S, Ganesh B, Kobayashi N (2013). Whole genomic analyses of equine group A rotaviruses from Japan: evidence for bovine-to-equine interspecies transmission and reassortment events. Vet Microbiol, 166 (3-4), 474-85.
  • Karayel I, Fehér E, Marton S et al. (2017). Putative vaccine breakthrough event associated with heterotypic rotavirus infection in newborn calves, Turkey, 2015. Vet Microbiol, 201 (2017), 7-13.
  • Karayel-Hacioglu I, Timurkan MO, Pellegrini F et al. (2022). Whole-genome analysis of a rare G15P[21] group A rotavirus detected at a dairy cattle farm. J Gen Virol, 103 (11), 001808.
  • Martella V, Bányai K, Matthijnssens J, Buonavoglia C, Ciarlet M (2010). Zoonotic aspects of rotaviruses. Vet Microbiol, 140 (3-4), 246-255.
  • Matthijnssens J, Potgieter CA, Ciarlet M et al. (2009). Are human P [14] Rotavirus strains the result of interspecies transmissions from sheep or other ungulates that belong to the mammalian order Artiodactyla? J Virol, 83 (7), 2917–2929.
  • Özkul A, Yeşilbağ K, Karaoğlu T, Burgu İ (2002). Electrophoretypes of bovine rotaviruses detected in Turkey. Turk J Vet Anim Sci, 26 (2), 359-362.
  • RCWG (2024). Rotavirus Classification Working Group: List of Accepted Genotypes by RCWG; Accession date: 01.07.2024. Accession link: https://rega.kuleuven.be/cev/viralmetagenomics/virus-classification/rcwg
  • Sadiq A, Khan J (2024). Rotavirus in developing countries: Molecular diversity, epidemiological insights, and strategies for effective vaccination. Front Microbiol, 14, 1297269.
  • Schoondermark-van de Ven E, van Ranst M, de Bruin W et al. (2013). Rabbit colony infected with a bovine-like G6P [11] rotavirus strain. Vet Microbiol, 166 (2013), 154-164.
  • Uyunmaz Saklı G, Bulut O, Hasöksüz M, Hadimli HH (2019). Investigation of bovine coronavirus and bovine rotavirus by rapid diagnosis kit and RT-PCR in diarrheic calf feces. J Ist Vet Sci, 3 (3), 57-63.
  • Ward RL, Knowlton DR, Hurst PFL (1988). Reassortant formation and selection following coinfection of cultured cells with subgroup 2 human rotaviruses. J Gen Virol, 69 (1), 149-162.
  • WHO (World Health Organization). (2009). Manual of rotavirus detection and characterization methods (No. WHO/IVB/08.17). Accession date: 01.07.2024. Accession link: https://iris.who.int/handle/10665/70122

Buzağıların Rotavirus Enfeksiyonunun Prevalansının Poliakrilamid Jel Elektroforez Yöntemi ile Araştırılması

Year 2024, Volume: 35 Issue: 3, 168 - 172, 28.11.2024
https://doi.org/10.36483/vanvetj.1513086

Abstract

Sığır rotavirus enfeksiyonları yenidoğanların ölümlerine neden olduğundan yetiştiriciler için önemli ekonomik kayıplara sebep olmaktadır. Reovirales takımı, Sedoreoviridae ailesi ve Rotavirus genusu içerisinde sınıflandırılan sığır rotavirusları en çok VP7 ve VP4 gen bölgelerine göre G ve P genotipleri olarak sınıflandırılmaktadır. Bunun haricinde diğer bir major antijen olan VP6 genetik ve antijenik özellikleri temel alınarak 10 farklı tür (grup A-J) belirlenmiştir. Grup A rotaviruslar sığırlarda en fazla ishale neden olurken grup B ve C enfeksiyonları da bilinmektedir. Buzağıların korunması için sürü bazında rotavirus taraması yapılmalı ve sığırların enfeksiyon durumu ortaya konulmalıdır. Bu amaçla Atatürk Üniversitesi Veteriner Fakültesi Viroloji Anabilim Dalı envanterinde bulunan ishal semptomu olan 100 adet buzağıya ait gaita örneği kullanıldı. Virus varlığını tespit etmek için grup ayrımına imkân veren poliakrilamid jel elektroforezi (PAGE) kullanıldı. Elektroforez öncesi gaita örneklerine nükleik asit ekstraksiyonu işlemi yapıldı ve sonrasında hazırlanan poliakrilamid jele yüklenerek yürütüldü. Yürütülen örnekler gümüş nitrat boyanarak segment paternleri belirlenerek rotavirus varlığına bakıldı. İncelenen örneklerin 27’sinde pozitiflik saptanırken 5 örnek şüpheli ve 68 örnek negatif olarak belirlendi. Pozitif bulunan örneklerin segment paterni grup A ile uyumlu bulundu ve tümünün bu grup içerisinde sınıflandığı görüldü. Her ne kadar aynı grup içerisinde yer alsa da tespit edilen pozitif örneklerin 3 farklı elektroforetipe sahip olduğu tespit edildi. Sonuç olarak rotavirusların buzağı ishalleri etiyolojisinde halen önemli rolü olduğu, tespit edilen rotavirusların grup A içerisinde yer almakla beraber varyasyon gösterdiği ve bölgede yetiştiricilerin kontrol ve hijyen önlemlerine dikkat etmesi gerektiği tespit edilmiştir.

Project Number

THD-2021-9090

References

  • Aksoy E, Azkur AK (2023). Genome characterization of a Turkish bovine rotavirus field isolate by shotgun metagenomics. Arch Virol, 168 (6), 159.
  • Al M, Balıkçı E (2012). Neonatal ishalli buzağılarda rotavirus, coronavirus, E. coli K99 ve Cryptosporidium parvum'un hızlı test kitleri ile teşhisi ve enteropatojen ile maternal immünite ilişkisi. Fırat Üniv Sağ Bil Vet Derg, 26(2), 73-78.
  • Alkan F, Ozkul A, Oguzoglu TC et al. (2010). Distribution of G (VP7) and P (VP4) genotypes of group A bovine rotaviruses from Turkish calves with diarrhea, 1997-2008. Vet Microbiol, 141 (3-4), 231-237.
  • Alkan F, Timurkan MÖ, Karayel İ (2015). Kuzey Kıbrıs Türk Cumhuriyeti’nde ishalli buzağılarda grup a rotavirus tespiti ve moleküler karakterizasyonu. Kafkas Üniv Vet Fak Derg, 21 (1), 127-130.
  • Ates O, Yesilbag K (2023). Characterization of bovine rotavirus isolates from diarrheic calves in Türkiye. Mol Biol Rep, 50 (4), 3063-3071.
  • Aydın H, Timurkan MO (2018). Buzağı ishallerinde Coronavirusun nukleoprotein gen ve rotavirusun VP7/VP4 gen bölgelerinin kısmi sekansı ve filogenetik analizi. Atatürk Üniv Vet Bil Derg, 13 (2), 211-218.
  • Ayolabi CI, Ojo DA, Armah GE (2013). Electropherotypes and G-types of group A rotaviruses detected in children with diarrhea in Lagos. ISRN Virol, 2013 (1), 79-84.
  • Ayub A, Unicomb L, Bingnan F, Hossain A (1993). Molecular heterogeneity of human group A rotavirus in rural Bangladesh as determined by electrophoresis of genomic ribonucleic acid, Trop Med, 35 (2), 53–63.
  • Bányai K, Kemenesi G, Budinski I et al. (2017). Candidate new rotavirus species in Schreiber's bats, Serbia. Infect Genet Evol, 48 (2017), 19-26.
  • Biryahwaho B, Hundley F, Desselberger U (1987). Bovine rotavirus with rearranged genome reassorts with human rotavirus. Arch Virol, 96 (3), 257-264.
  • Bukrinskaia AG, Sharova NK, Sergeev OV, Vasil'ev BI, Ten NL (1990). The RNA electrophoretypes of the rotaviruses circulating in Moscow and Leningrad in the winter of 1987-1988. Vopr Virusol, 35 (3), 216-218.
  • Bulut O, Uyunmaz Saklı G, Hasöksüz M et al. (2020). Comparison of reverse-transcriptase polymerase chain reaction (RT-PCR) and rapid test for the detection of bovine rotavirus and bovine coronavirus in anatolian water buffaloes. Eurasian J Vet Sci, 36 (3), 159-165.
  • Cabalar M, Boynukara B, Gülhan T, Ekin İH (2001). Prevalence of rotavirus, Escherichia coli K99 and O157: H7 in healthy dairy cattle herds in Van, Turkey. Turk J Vet Anim Sci, 25 (2), 191-196.
  • Carossino M, Vissani MA, Barrandeguy ME, Balasuriya UB, Parreño V (2024). Equine rotavirus A under the one health lens: potential impacts on public health. Viruses, 16 (1), 130.
  • Chen J, Li D, Xu Y et al. (2023). Establishment and application of multiplex droplet digital polymerase chain reaction assay for bovine enterovirus, bovine coronavirus, and bovine rotavirus. Front Vet Sci, 10, 1157900.
  • da Costa Mendes VM, de Beer M, Peenze I, Steele AD (1993). Molecular epidemiology and subgroup analysis of bovine group A rotaviruses associated with diarrhea in South African calves. J Clin Microbiol, 31 (12), 3333-3335.
  • Ghosh S, Taniguchi K, Aida S, Ganesh B, Kobayashi N (2013). Whole genomic analyses of equine group A rotaviruses from Japan: evidence for bovine-to-equine interspecies transmission and reassortment events. Vet Microbiol, 166 (3-4), 474-85.
  • Karayel I, Fehér E, Marton S et al. (2017). Putative vaccine breakthrough event associated with heterotypic rotavirus infection in newborn calves, Turkey, 2015. Vet Microbiol, 201 (2017), 7-13.
  • Karayel-Hacioglu I, Timurkan MO, Pellegrini F et al. (2022). Whole-genome analysis of a rare G15P[21] group A rotavirus detected at a dairy cattle farm. J Gen Virol, 103 (11), 001808.
  • Martella V, Bányai K, Matthijnssens J, Buonavoglia C, Ciarlet M (2010). Zoonotic aspects of rotaviruses. Vet Microbiol, 140 (3-4), 246-255.
  • Matthijnssens J, Potgieter CA, Ciarlet M et al. (2009). Are human P [14] Rotavirus strains the result of interspecies transmissions from sheep or other ungulates that belong to the mammalian order Artiodactyla? J Virol, 83 (7), 2917–2929.
  • Özkul A, Yeşilbağ K, Karaoğlu T, Burgu İ (2002). Electrophoretypes of bovine rotaviruses detected in Turkey. Turk J Vet Anim Sci, 26 (2), 359-362.
  • RCWG (2024). Rotavirus Classification Working Group: List of Accepted Genotypes by RCWG; Accession date: 01.07.2024. Accession link: https://rega.kuleuven.be/cev/viralmetagenomics/virus-classification/rcwg
  • Sadiq A, Khan J (2024). Rotavirus in developing countries: Molecular diversity, epidemiological insights, and strategies for effective vaccination. Front Microbiol, 14, 1297269.
  • Schoondermark-van de Ven E, van Ranst M, de Bruin W et al. (2013). Rabbit colony infected with a bovine-like G6P [11] rotavirus strain. Vet Microbiol, 166 (2013), 154-164.
  • Uyunmaz Saklı G, Bulut O, Hasöksüz M, Hadimli HH (2019). Investigation of bovine coronavirus and bovine rotavirus by rapid diagnosis kit and RT-PCR in diarrheic calf feces. J Ist Vet Sci, 3 (3), 57-63.
  • Ward RL, Knowlton DR, Hurst PFL (1988). Reassortant formation and selection following coinfection of cultured cells with subgroup 2 human rotaviruses. J Gen Virol, 69 (1), 149-162.
  • WHO (World Health Organization). (2009). Manual of rotavirus detection and characterization methods (No. WHO/IVB/08.17). Accession date: 01.07.2024. Accession link: https://iris.who.int/handle/10665/70122
There are 28 citations in total.

Details

Primary Language English
Subjects Veterinary Virology
Journal Section Araştırma Makaleleri
Authors

Nüvit Coşkun 0000-0001-7642-6460

Mehmet Ozkan Timurkan 0000-0002-0458-7887

Hakan Aydın 0000-0003-2200-1744

Volkan Yılmaz 0000-0003-2752-5360

Project Number THD-2021-9090
Early Pub Date November 28, 2024
Publication Date November 28, 2024
Submission Date July 9, 2024
Acceptance Date November 13, 2024
Published in Issue Year 2024 Volume: 35 Issue: 3

Cite

APA Coşkun, N., Timurkan, M. O., Aydın, H., Yılmaz, V. (2024). Investigation of the Prevalence of Rotavirus Infection in Calves using Polyacrylamide Gel Electrophoresis. Van Veterinary Journal, 35(3), 168-172. https://doi.org/10.36483/vanvetj.1513086
AMA Coşkun N, Timurkan MO, Aydın H, Yılmaz V. Investigation of the Prevalence of Rotavirus Infection in Calves using Polyacrylamide Gel Electrophoresis. Van Vet J. November 2024;35(3):168-172. doi:10.36483/vanvetj.1513086
Chicago Coşkun, Nüvit, Mehmet Ozkan Timurkan, Hakan Aydın, and Volkan Yılmaz. “Investigation of the Prevalence of Rotavirus Infection in Calves Using Polyacrylamide Gel Electrophoresis”. Van Veterinary Journal 35, no. 3 (November 2024): 168-72. https://doi.org/10.36483/vanvetj.1513086.
EndNote Coşkun N, Timurkan MO, Aydın H, Yılmaz V (November 1, 2024) Investigation of the Prevalence of Rotavirus Infection in Calves using Polyacrylamide Gel Electrophoresis. Van Veterinary Journal 35 3 168–172.
IEEE N. Coşkun, M. O. Timurkan, H. Aydın, and V. Yılmaz, “Investigation of the Prevalence of Rotavirus Infection in Calves using Polyacrylamide Gel Electrophoresis”, Van Vet J, vol. 35, no. 3, pp. 168–172, 2024, doi: 10.36483/vanvetj.1513086.
ISNAD Coşkun, Nüvit et al. “Investigation of the Prevalence of Rotavirus Infection in Calves Using Polyacrylamide Gel Electrophoresis”. Van Veterinary Journal 35/3 (November 2024), 168-172. https://doi.org/10.36483/vanvetj.1513086.
JAMA Coşkun N, Timurkan MO, Aydın H, Yılmaz V. Investigation of the Prevalence of Rotavirus Infection in Calves using Polyacrylamide Gel Electrophoresis. Van Vet J. 2024;35:168–172.
MLA Coşkun, Nüvit et al. “Investigation of the Prevalence of Rotavirus Infection in Calves Using Polyacrylamide Gel Electrophoresis”. Van Veterinary Journal, vol. 35, no. 3, 2024, pp. 168-72, doi:10.36483/vanvetj.1513086.
Vancouver Coşkun N, Timurkan MO, Aydın H, Yılmaz V. Investigation of the Prevalence of Rotavirus Infection in Calves using Polyacrylamide Gel Electrophoresis. Van Vet J. 2024;35(3):168-72.

88x31.png

Accepted papers are licensed under Creative Commons Attribution-NonCommercial 4.0 International License