Research Article
BibTex RIS Cite
Year 2024, Volume: 9 Issue: 2, 143 - 148, 22.08.2024
https://doi.org/10.31797/vetbio.1476384

Abstract

Project Number

No financial support or grant was received for this study.

References

  • Abdul‐Ghani, M. A., Lyssenko, V., Tuomi, T., DeFronzo, R. A.,Groop, L. (2010). The shape of plasma glucose concentration curve during OGTT predicts future risk of type 2 diabetes. Diabetes/Metabolism Research and Reviews, 26(4), 280-286. https://doi.org/10.1002/dmrr.1084
  • Ahmed, F. N., Naqvi, F. N.,Shafiq, F. (2006). Lipid peroxidation and serum antioxidant enzymes in patients with type 2 diabetes mellitus. Annals of the New York Academy of Sciences, 1084, 481-489. https://doi.org/10.1196/annals.1372.022
  • Al-Awar, A., Kupai, K., Veszelka, M., Szűcs, G., Attieh, Z., Murlasits, Z., Török, S., Pósa, A.,Varga C. (2016). Experimental diabetes mellitus in different animal models. Journal of Diabetes Research, 2016, 9051426, https://doi.org/10.1155/2016/9051426
  • Basciano, H., Federico, L., Adeli, K. (2005). Fructose, insulin resistance, and metabolic dyslipidemia. Nutrition & Metabolism, 2(5), 1-14. https://doi.org/10.1186/1743-7075-2-5
  • Chatterjee, S., Khunti, K., Davies, M. J. (2017). Type 2 diabetes. Lancet, 389, 2239-2251.https://doi.org/10.1016/S0140-6736(17)30058-2
  • DeFronzo, R., Davidson, J., Del Prato, S. (2012). The role of the kidneys in glucose homeostasis: a new path towards normalizing glycaemia. Diabetes, Obesity and Metabolism, 14, 5-14.
  • DeFronzo, R. A., Ferrannini, E., Groop, L., Henry, R. R., Herman, W. H., Holst, J. J., Hu, F. B., Kahn, C. R., Raz, I., Shulman, G. I., Simonson, D. C., Testa, M. A.,Weiss, R. (2015). Type 2 diabetes mellitus. Nature Reviews Disease Primers, 1, 15019.https://doi.org/10.1038/nrdp.2015.19
  • Ergel, E. T., Ertuğrul, T. (2022). Histochemical and immunohistochemical investigation of the effects of Sambucus nigra on mast cells and VEGF in diabetic rat spleen. Journal of Advances in VetBio Science and Techniques, 7, 296-304.
  • Frode, T. S., Medeiros, Y. S. (2008). Animal models to test drugs with potential antidiabetic activity. Journal Ethnopharmacology, 115, 173-183.https://doi.org/10.1016/j.jep.2007.10.038
  • Ibuki, F. K., Bergamaschi, C. T., da Silva Pedrosa, M., Nogueira, F. N. (2020). Effect of vitamin C and E on oxidative stress and antioxidant system in the salivary glands of STZ-induced diabetic rats. Archives of Oral Biology, 116, 104765.https://doi.org/10.1016/j.archoralbio.2020.104765
  • Incir, S., Bolayirli, I. M., Inan, O., Aydın, M. S., Bilgin, I. A., Sayan, I., Esrefoglu, M.,Seven, A. (2016). The effects of genistein supplementation on fructose induced insulin resistance, oxidative stress and inflammation. Life Sciences, 158, 57-62.https://doi.org/10.1016/j.lfs.2016.06.014
  • Kerem, U., Erdoğan, S., Erdoğan, H. (2023). Sonorous plunge of serum magnesium levels among pre-diabetic and diabetic cats. Journal of Advances in VetBio Science and Techniques, 8, 191-195.
  • Khan, M. A. B., Hashim, M. J., King, J. K., Govender, R. D., Mustafa, H., Al Kaabi, J. (2020). Epidemiology of Type 2 Diabetes - Global Burden of Disease and Forecasted Trends. The Journal of Epidemiology and Global Health, 10, 107-111.https://doi.org/10.2991/jegh.k.191028.001
  • Lee, Y. S., Li, P., Huh, J. Y., Hwang, I. J., Lu, M., Kim, J. I., Ham, M., Talukdar, S., Chen, A.,Lu, W. J. (2011). Inflammation is necessary for long-term but not short-term high-fat diet–induced insulin resistance. Diabetes, 60, 2474-2483.
  • Lu, Y. X., Zhang, Q., Li, J., Sun, Y. X., Wang, L. Y., Cheng, W. M., Hu, X. Y. (2010). Antidiabetic effects of total flavonoids from Litsea Coreana leve on fat-fed, streptozotocin-induced type 2 diabetic rats. The American Journal of Chinese Medicine, 38, 713-725. https://doi.org/10.1142/s0192415x10008184
  • Magalhães, D. A., Kume, W. T., Correia, F. S., Queiroz, T. S., Allebrandt, E. W., Santos, M. P., Kawashita, N. H., França, S. A. (2019). High-fat diet and streptozotocin in the induction of type 2 diabetes mellitus: a new proposal . Anais da Academia Brasileira de Ciências, 91.
  • Mamikutty, N., Thent, Z. C., Sapri, S. R., Sahruddin, N. N., Mohd Yusof, M. R., Haji Suhaimi, F. (2014). The establishment of metabolic syndrome model by induction of fructose drinking water in male Wistar rats. BioMed Research International, 2014.
  • Murugan, P., Pari, L. (2006). Antioxidant effect of tetrahydrocurcumin in streptozotocin–nicotinamide induced diabetic rats. Life Sciences, 79, 1720-1728.
  • Nelson, R. W.,Reusch, C. E. (2014). Animal models of disease: classification and etiology of diabetes in dogs and cats. Journal of Endocrinology, 222, T1-T9.
  • Punthakee, Z., Goldenberg, R., Katz, P. (2018). Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Canadian Journal of Diabetes, 42, S10-S15.
  • Quinn, L. (2002). Mechanisms in the development of type 2 diabetes mellitus. Journal of Cardiovascular Nursing, 16, 1-16.
  • Ruan, H., Lodish, H. F. (2003). Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factor-α. Cytokine & Growth Factor Reviews, 14, 447-455.
  • Sah, S. P., Singh, B., Choudhary, S., Kumar, A. (2016). Animal models of insulin resistance: A review. Pharmacological Reports, 68, 1165-1177.
  • Saini, V. (2010). Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World Journal of Diabetes, 1, 68.
  • Sayeli, V. K., Shenoy, A. K. (2021). Antidiabetic effect of bio-enhanced preparation of turmeric in streptozotocin-nicotinamide induced type 2 diabetic Wistar rats. Journal of Ayurveda and Integrative Medicine, 12, 474-479.
  • Scheen, A. J. (2003). Pathophysiology of type 2 diabetes. Acta Clinica Belgica, 58, 335-341.https://doi.org/10.1179/acb.2003.58.6.001
  • Soetikno, V., Murwantara, A., Andini, P., Charlie, F., Lazarus, G., Louisa, M., Arozal, W. (2020). Alpha-mangostin improves cardiac hypertrophy and fibrosis and associated biochemical parameters in high-fat/high-glucose diet and low-dose streptozotocin injection-induced type 2 diabetic rats. Journal of Experimental Pharmacology, 12, 27-38.https://doi.org/10.2147/JEP.S233111
  • Srinivasan, K., Viswanad, B., Asrat, L., Kaul, C.,Ramarao, P. (2005). Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: A model for type 2 diabetes and pharmacological screening. Pharmacological Research, 52, 313-320.
  • Szkudelski, T. (2012). Streptozotocin–nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Experimental Biology and Medicine, 237, 481-490.
  • Watkins, D. A., Ali, M. K. (2023). Measuring the global burden of diabetes: implications for health policy, practice, and research. The Lancet, 402, 163-165.
  • Young, K. A., Maturu, A., Lorenzo, C., Langefeld, C. D., Wagenknecht, L. E., Chen, Y.-D. I., Taylor, K. D., Rotter, J. I., Norris, J. M., Rasouli, N. (2019). The triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio as a predictor of insulin resistance, β-cell function, and diabetes in Hispanics and African Americans. Journal of Diabetes and its Complications, 33, 118-122.

Comparison of some diabetic and oxidative status parameters in three different experimental type 2 diabetic rat models

Year 2024, Volume: 9 Issue: 2, 143 - 148, 22.08.2024
https://doi.org/10.31797/vetbio.1476384

Abstract

The aim of the study was to compare the levels of postprandial glucose, oral glucose tolerance test, and malondialdehyde parameters in 3 different experimental type 2 diabetic models induced rats. In the study, 18 Wistar albino rats were divided into 3 groups. The high-fat diet and streptozotocin (35 mg/kg, SC) were administered to the rats in the first group, water containing 20% fructose was administered to the second group, and nicotinamide (110 mg/kg, IP) and streptozotocin (60 mg/kg, SC) were administered to the third group. Oral glucose tolerance test, postprandial glucose, and malondialdehyde analyzes in 3 different experimental type 2 diabetic rat models were performed and they were euthanized at the 70th days. The postprandial glucose level was higher in the 1st and 3rd model groups than in the 2nd model group, while malondialdehyde level was no difference between the groups. Moreover, the second model group was significantly lower than the other two groups at all times according to oral glucose test results. In conclusion, the results of this research will contribute to researchers choosing the right model and parameters in experimental type 2 diabetic models in rats in the future.

Project Number

No financial support or grant was received for this study.

References

  • Abdul‐Ghani, M. A., Lyssenko, V., Tuomi, T., DeFronzo, R. A.,Groop, L. (2010). The shape of plasma glucose concentration curve during OGTT predicts future risk of type 2 diabetes. Diabetes/Metabolism Research and Reviews, 26(4), 280-286. https://doi.org/10.1002/dmrr.1084
  • Ahmed, F. N., Naqvi, F. N.,Shafiq, F. (2006). Lipid peroxidation and serum antioxidant enzymes in patients with type 2 diabetes mellitus. Annals of the New York Academy of Sciences, 1084, 481-489. https://doi.org/10.1196/annals.1372.022
  • Al-Awar, A., Kupai, K., Veszelka, M., Szűcs, G., Attieh, Z., Murlasits, Z., Török, S., Pósa, A.,Varga C. (2016). Experimental diabetes mellitus in different animal models. Journal of Diabetes Research, 2016, 9051426, https://doi.org/10.1155/2016/9051426
  • Basciano, H., Federico, L., Adeli, K. (2005). Fructose, insulin resistance, and metabolic dyslipidemia. Nutrition & Metabolism, 2(5), 1-14. https://doi.org/10.1186/1743-7075-2-5
  • Chatterjee, S., Khunti, K., Davies, M. J. (2017). Type 2 diabetes. Lancet, 389, 2239-2251.https://doi.org/10.1016/S0140-6736(17)30058-2
  • DeFronzo, R., Davidson, J., Del Prato, S. (2012). The role of the kidneys in glucose homeostasis: a new path towards normalizing glycaemia. Diabetes, Obesity and Metabolism, 14, 5-14.
  • DeFronzo, R. A., Ferrannini, E., Groop, L., Henry, R. R., Herman, W. H., Holst, J. J., Hu, F. B., Kahn, C. R., Raz, I., Shulman, G. I., Simonson, D. C., Testa, M. A.,Weiss, R. (2015). Type 2 diabetes mellitus. Nature Reviews Disease Primers, 1, 15019.https://doi.org/10.1038/nrdp.2015.19
  • Ergel, E. T., Ertuğrul, T. (2022). Histochemical and immunohistochemical investigation of the effects of Sambucus nigra on mast cells and VEGF in diabetic rat spleen. Journal of Advances in VetBio Science and Techniques, 7, 296-304.
  • Frode, T. S., Medeiros, Y. S. (2008). Animal models to test drugs with potential antidiabetic activity. Journal Ethnopharmacology, 115, 173-183.https://doi.org/10.1016/j.jep.2007.10.038
  • Ibuki, F. K., Bergamaschi, C. T., da Silva Pedrosa, M., Nogueira, F. N. (2020). Effect of vitamin C and E on oxidative stress and antioxidant system in the salivary glands of STZ-induced diabetic rats. Archives of Oral Biology, 116, 104765.https://doi.org/10.1016/j.archoralbio.2020.104765
  • Incir, S., Bolayirli, I. M., Inan, O., Aydın, M. S., Bilgin, I. A., Sayan, I., Esrefoglu, M.,Seven, A. (2016). The effects of genistein supplementation on fructose induced insulin resistance, oxidative stress and inflammation. Life Sciences, 158, 57-62.https://doi.org/10.1016/j.lfs.2016.06.014
  • Kerem, U., Erdoğan, S., Erdoğan, H. (2023). Sonorous plunge of serum magnesium levels among pre-diabetic and diabetic cats. Journal of Advances in VetBio Science and Techniques, 8, 191-195.
  • Khan, M. A. B., Hashim, M. J., King, J. K., Govender, R. D., Mustafa, H., Al Kaabi, J. (2020). Epidemiology of Type 2 Diabetes - Global Burden of Disease and Forecasted Trends. The Journal of Epidemiology and Global Health, 10, 107-111.https://doi.org/10.2991/jegh.k.191028.001
  • Lee, Y. S., Li, P., Huh, J. Y., Hwang, I. J., Lu, M., Kim, J. I., Ham, M., Talukdar, S., Chen, A.,Lu, W. J. (2011). Inflammation is necessary for long-term but not short-term high-fat diet–induced insulin resistance. Diabetes, 60, 2474-2483.
  • Lu, Y. X., Zhang, Q., Li, J., Sun, Y. X., Wang, L. Y., Cheng, W. M., Hu, X. Y. (2010). Antidiabetic effects of total flavonoids from Litsea Coreana leve on fat-fed, streptozotocin-induced type 2 diabetic rats. The American Journal of Chinese Medicine, 38, 713-725. https://doi.org/10.1142/s0192415x10008184
  • Magalhães, D. A., Kume, W. T., Correia, F. S., Queiroz, T. S., Allebrandt, E. W., Santos, M. P., Kawashita, N. H., França, S. A. (2019). High-fat diet and streptozotocin in the induction of type 2 diabetes mellitus: a new proposal . Anais da Academia Brasileira de Ciências, 91.
  • Mamikutty, N., Thent, Z. C., Sapri, S. R., Sahruddin, N. N., Mohd Yusof, M. R., Haji Suhaimi, F. (2014). The establishment of metabolic syndrome model by induction of fructose drinking water in male Wistar rats. BioMed Research International, 2014.
  • Murugan, P., Pari, L. (2006). Antioxidant effect of tetrahydrocurcumin in streptozotocin–nicotinamide induced diabetic rats. Life Sciences, 79, 1720-1728.
  • Nelson, R. W.,Reusch, C. E. (2014). Animal models of disease: classification and etiology of diabetes in dogs and cats. Journal of Endocrinology, 222, T1-T9.
  • Punthakee, Z., Goldenberg, R., Katz, P. (2018). Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Canadian Journal of Diabetes, 42, S10-S15.
  • Quinn, L. (2002). Mechanisms in the development of type 2 diabetes mellitus. Journal of Cardiovascular Nursing, 16, 1-16.
  • Ruan, H., Lodish, H. F. (2003). Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factor-α. Cytokine & Growth Factor Reviews, 14, 447-455.
  • Sah, S. P., Singh, B., Choudhary, S., Kumar, A. (2016). Animal models of insulin resistance: A review. Pharmacological Reports, 68, 1165-1177.
  • Saini, V. (2010). Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World Journal of Diabetes, 1, 68.
  • Sayeli, V. K., Shenoy, A. K. (2021). Antidiabetic effect of bio-enhanced preparation of turmeric in streptozotocin-nicotinamide induced type 2 diabetic Wistar rats. Journal of Ayurveda and Integrative Medicine, 12, 474-479.
  • Scheen, A. J. (2003). Pathophysiology of type 2 diabetes. Acta Clinica Belgica, 58, 335-341.https://doi.org/10.1179/acb.2003.58.6.001
  • Soetikno, V., Murwantara, A., Andini, P., Charlie, F., Lazarus, G., Louisa, M., Arozal, W. (2020). Alpha-mangostin improves cardiac hypertrophy and fibrosis and associated biochemical parameters in high-fat/high-glucose diet and low-dose streptozotocin injection-induced type 2 diabetic rats. Journal of Experimental Pharmacology, 12, 27-38.https://doi.org/10.2147/JEP.S233111
  • Srinivasan, K., Viswanad, B., Asrat, L., Kaul, C.,Ramarao, P. (2005). Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: A model for type 2 diabetes and pharmacological screening. Pharmacological Research, 52, 313-320.
  • Szkudelski, T. (2012). Streptozotocin–nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Experimental Biology and Medicine, 237, 481-490.
  • Watkins, D. A., Ali, M. K. (2023). Measuring the global burden of diabetes: implications for health policy, practice, and research. The Lancet, 402, 163-165.
  • Young, K. A., Maturu, A., Lorenzo, C., Langefeld, C. D., Wagenknecht, L. E., Chen, Y.-D. I., Taylor, K. D., Rotter, J. I., Norris, J. M., Rasouli, N. (2019). The triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio as a predictor of insulin resistance, β-cell function, and diabetes in Hispanics and African Americans. Journal of Diabetes and its Complications, 33, 118-122.
There are 31 citations in total.

Details

Primary Language English
Subjects Veterinary Pharmacology
Journal Section Research Articles
Authors

Öznur Tufan 0000-0002-5870-0793

Tuğba Melike Parlak 0000-0003-3277-0336

Burak Dik 0000-0003-2738-6911

Project Number No financial support or grant was received for this study.
Early Pub Date August 11, 2024
Publication Date August 22, 2024
Submission Date May 1, 2024
Acceptance Date July 2, 2024
Published in Issue Year 2024 Volume: 9 Issue: 2

Cite

APA Tufan, Ö., Parlak, T. M., & Dik, B. (2024). Comparison of some diabetic and oxidative status parameters in three different experimental type 2 diabetic rat models. Journal of Advances in VetBio Science and Techniques, 9(2), 143-148. https://doi.org/10.31797/vetbio.1476384

22563   CABI-Logo_NEW_accessible.jpg   logo_world_of_journals_no_margin.png  download download   download   download        download