Research Article
BibTex RIS Cite

İmalat İşletmelerinin Dijitalleşme Süreçleri Üzerine Nitel Bir Çalışma

Year 2023, 100th Anniversary Special Issue, 21 - 41, 27.12.2023
https://doi.org/10.18657/yonveek.1379397

Abstract

Dijitalleşme imalat sektöründe faaliyet gösteren işletmeler için zorluklarla birlikte büyük fırsatlar da sunmaktadır. Bu çalışmanın amacı imalat işletmelerinin dijital dönüşüm sürecinde yaşadıkları zorlukları, dönüşüme girme nedenlerini, elde ettikleri faydaları, kullandıkları donanımları belirleyebilmek için nitel bir çalışma yapmaktır. Çalışmada nitel araştırma yönteminden fenomenoloji deseni kullanılmıştır. Bu nedenle Konya’da faaliyette bulunan ve dijitalleşme deneyimine sahip 7 imalat işletmesiyle derinlemesine görüşmeler gerçekleştirilmiştir. Elde edilen bulgular ışığında dijital dönüşüme geçiş nedenleri, dijital dönüşüm sürecindeki zorluklar, dijitalleşme kapsamında kullanılan donanımlar, dijitalleşmeyi uyguladıkları departmanlar, dijital dönüşümün faydaları ve dijital dönüşüm sürecinde ihtiyaç duyulan yetkinlikler olarak altı ana tema ortaya çıkmıştır. Elde edilen sonuçlara göre işletmeler maliyetlerini düşürebilmek, rekabet avantajı kazanabilmek, çevrenin değişkenliğine uyum sağlayabilmek için dijitalleşme sürecine girmişlerdir. Dijitalleşme sürecinde bulunan işletmelerin verimliliklerinin arttığı, hız kazandıkları, kaynak kullanımını etkin hale getirdikleri elde ettikleri faydalar arasındadır.
Anahtar Kelimeler: Dijitalleşme, İmalat İşletmeleri, Nitel Araştırma
JEL Sınıflandırması: M10, D20, L60, O14

References

  • Baltacı, A. (2018). Nitel araştırmalarda örnekleme yöntemleri ve örnek hacmi sorunsalı üzerine kavramsal bir inceleme. Bitlis Eren Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 7(1), 231-274.
  • Baltacı, A. (2019). Nitel araştırma süreci: Nitel bir araştırma nasıl yapılır?. Ahi Evran Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 5(2), 368-388.
  • Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8), 1798-1828.
  • Blasingame, J. (2013). The Age of the Customer: Prepare for the Moment of Relevance. SBN Books. Botta, A., de Donato, W., Persico, V., & Pescapé, A. (2016). Integration of Cloud computing and Internet of Things: A survey. Future Generation Computer Systems, 56, 684-700.
  • Braun, V., ve Clarke, V. (2012), “Thematic analysis. In H. Cooper (Ed.)”, APA Handbook of Research Methods in Psychology: Vol. 2. Research designs (pp. 57-91) Washington, DC: American Psychological Association.
  • Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W. W. Norton & Company.
  • Bughin, J., Hazan, E., Sree Ramaswamy, P., DC, W., & Chu, M. (2017). Artificial intelligence the next digital frontier.
  • Campbell, T., Williams, C., Ivanova, O., & Garrett, B. (2011). Could 3D printing change the world. Technologies, Potential, and Implications of Additive Manufacturing, Atlantic Council, Washington, DC, 3, 1-16.
  • Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19(2), 171-209.
  • Christopher, M., & Lee, H. (2004). Mitigating supply chain risk through improved confidence. International journal of physical distribution & logistics management, 34(5), 388-396.
  • Creswell, J. W., Hanson, W. E. ve Plano Clark, V. (2007), Qualitative Research Designs: Selection and Implementation, The Counseling Psychologist, 35(2), 236-264.
  • Fuster, D. (2019). Qualitative Research: Hermeneutical Phenomenological Method. Propósitos y Representaciones, 7(1), 201-229. Doi: http://dx.doi.org/10.20511/pyr2019.v7n1.267.
  • General Electric. (2020). GE Digital. https://www.ge.com/digital/
  • Gökçe, Z. (2022). Wenger'in eylem-kimlik kuramını geliştirmesi sanal eylem birimi bireylerinin kişisel özellikleri ile odaklanma motivasyonlarının davranış gösterme davranışına etkisi (Doktora tezi). İstanbul Üniversitesi.
  • Greening, N. (2019). Phenomenological Research Methodology. Scientific Research Journal (SCIRJ), 7(5), 88-92.
  • Hancock, B., Ockleford, E. ve Windridge, K. (2009). An Introduction to Qualitative Research. The NIHR RDS for the East Midlands, Nottingham.
  • Hofmann, P., Samp, C., & Urbach, N. (2020). Robotic process automation. Electronic markets, 30(1), 99-106.
  • Hulla, M., Herstätter, P., Wolf, M. ve Ramsauer, C. (2021). Towards digitalization in production in SMEs – A qualitative study of challenges, competencies and requirements for trainings. Procedia CIRP 104, 887–892.
  • Kılıçarslan, A (2022). Algoritmik Ticaretin Yükselişi. M. Cihangir, S. Özer (Ed.), Dijital Çağda Küresel Politik Dönüşüm: Sistem, Aktörler, Güvenlik (1.baskı) içinde (s. 75-107). Çanakkale: Paradigma Akademi.
  • Kurfess, T. R. (Ed.). (2005). Robotics and automation handbook (Vol. 414). Boca Raton, FL: CRC press.
  • Lee, J., Bagheri, B., & Kao, H. A. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18-23.
  • Lee, J., Lapira, E., Bagheri, B., & Kao, H. A. (2013). Recent advances and trends in predictive manufacturing systems in big data environment. Manufacturing letters, 1(1), 38-41.
  • Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Hung Byers, A. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute.
  • Maresova, P., Soukal, I., Svobodova, L., Hedvicakova, M., Javanmardi, E., Selamat, A., & Krejcar, O. (2018).
  • Consequences of industry 4.0 in business and economics. Economies, 6(3), 46.Marshall, M. N. (1996). Sampling For Qualitative Research. Family Practice, 13(6), 522-526.
  • Monczka, R. M., Handfield, R. B., Giunipero, L. C., & Patterson, J. L. (2020). Purchasing and supply chain management. Cengage Learning.
  • Önbıçak, E. H. ve Telli, S. G. (2022). Kobi’lerde Satış Sonrası Hizmetlerin Dijitalleşmesi: Makine İmalat Sektörü İzmir İli Örneği. Journal of Business in The Digital Age, 5(1), 1-15.
  • Özsoylu, A. F. (2017). Endüstri 4.0. Çukurova Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 21(1), 41-64.
  • Pirim, A. G. H. (2006). Yapay zeka. Yaşar Üniversitesi E-Dergisi, 1(1), 81-93.
  • Polat, A. (2022). Nitel araştırmalarda yarı-yapılandırılmış görüşme soruları: Soru form ve türleri, nitelikler ve sıralama. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 22(Özel Sayı 2), 161-182.
  • Porter, M. E., & Heppelmann, J. E. (2014). How smart, connected products are transforming competition. Harvard Business Review, 92(11), 64-88.
  • Provost, F., & Fawcett, T. (2013). Data science and its relationship to big data and data-driven decision making. Big data, 1(1), 51-59.
  • Rifkin, J. (2014). The zero marginal cost society: The internet of things, the collaborative commons, and the eclipse of capitalism. St. Martin's Press.
  • Schneier, B. (2015). Data and Goliath: The hidden battles to collect your data and control your world. WW Norton & Company.
  • Schwab, K. (2017). The fourth industrial revolution. Currency.
  • Siemens. (2020). Siemens Digital Enterprise Suite. https://new.siemens.com/global/en/products/automation.html
  • Starks, H., & Trinidad, S. B. (2007). Choose your method: a comparison of phenomenology, discourse analysis, and grounded theory. Qualitative Health Research, 17(10), 1372-1380.
  • Üstündağ, A. ve Çevikcan, E. (2017). Endüstri 4.0: dijital dönüşümün yönetilmesi . Springer.
  • Ong, S. K., Yuan, M. L., & Nee, A. Y. (2008). Augmented reality applications in manufacturing: a survey. International journal of production research, 46(10), 2707-2742.
  • Warshaw, L. (2017). Industry 4.0 and the digital twin: Manufacturing meets its match. Retrieved January, 23, 2019.
  • Westerman, G., Bonnet, D., & McAfee, A. (2014). The nine elements of digital transformation. MIT Sloan Management Review, 55(3), 1-6.
  • Westerman, G., Calméjane, C., Bonnet, D., Ferraris, P., & McAfee, A. (2011). Digital Transformation: A roadmap for billion-dollar organizations. MIT Center for digital business and capgemini consulting, 1, 1-68.
  • Yıldırım, A. ve Şimşek, H. (2021). Sosyal Bilimlerde Nitel Araştırma Yöntemleri. Seçkin Yayıncılık, 12. Baskı, Ankara.
  • Yıldırım, B. (2020), “İşletmelerde Dijital Dönüşüm Süreci: Nitel Bir Araştırma”, Ekonomi Maliye İşletme Dergisi, 3(2):204-223.
  • Zhang, L., Luo, Y., Tao, F., Li, B. H., Ren, L., Zhang, X., & Liu, Y. (2014). Cloud manufacturing: a new manufacturing paradigm. Enterprise Information Systems, 8(2), 167-187.
  • Zonta, T., Da Costa, C. A., da Rosa Righi, R., de Lima, M. J., da Trindade, E. S., & Li, G. P. (2020). Predictive maintenance in the Industry 4.0: A systematic literature review. Computers & Industrial Engineering, 150, 106889.

A Qualitative Study on Digitalization Processes of Manufacturing Businesses

Year 2023, 100th Anniversary Special Issue, 21 - 41, 27.12.2023
https://doi.org/10.18657/yonveek.1379397

Abstract

Digitalisation offers great opportunities as well as challenges for businesses operating in the manufacturing sector. The aim of this study is to conduct a qualitative study to determine the difficulties experienced by manufacturing enterprises in the digital transformation process, the reasons for entering the transformation, the benefits they have obtained, and the equipment they use. In this study, phenomenology design from qualitative research method was used. For this reason, in-depth interviews were conducted with 7 manufacturing enterprises operating in Konya and having digitalisation experience. In the light of the findings, six main themes emerged as the reasons for transition to digital transformation, difficulties in the digital transformation process, the equipment used within the scope of digitalisation, the departments where they implement digitalisation, the benefits of digital transformation and the competencies needed in the digital transformation process. According to the results obtained, enterprises have entered the digitalisation process in order to reduce their costs, gain competitive advantage and adapt to the variability of the environment. Among the benefits obtained by the enterprises in the digitalisation process are that their productivity increases, they gain speed, and they make the use of resources efficient.
Key Words: Digitalization, Manufacturing Businesses, Qualitative Research
JEL Classification: M10, D20, L60, O14

References

  • Baltacı, A. (2018). Nitel araştırmalarda örnekleme yöntemleri ve örnek hacmi sorunsalı üzerine kavramsal bir inceleme. Bitlis Eren Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 7(1), 231-274.
  • Baltacı, A. (2019). Nitel araştırma süreci: Nitel bir araştırma nasıl yapılır?. Ahi Evran Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 5(2), 368-388.
  • Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8), 1798-1828.
  • Blasingame, J. (2013). The Age of the Customer: Prepare for the Moment of Relevance. SBN Books. Botta, A., de Donato, W., Persico, V., & Pescapé, A. (2016). Integration of Cloud computing and Internet of Things: A survey. Future Generation Computer Systems, 56, 684-700.
  • Braun, V., ve Clarke, V. (2012), “Thematic analysis. In H. Cooper (Ed.)”, APA Handbook of Research Methods in Psychology: Vol. 2. Research designs (pp. 57-91) Washington, DC: American Psychological Association.
  • Brynjolfsson, E., & McAfee, A. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies. W. W. Norton & Company.
  • Bughin, J., Hazan, E., Sree Ramaswamy, P., DC, W., & Chu, M. (2017). Artificial intelligence the next digital frontier.
  • Campbell, T., Williams, C., Ivanova, O., & Garrett, B. (2011). Could 3D printing change the world. Technologies, Potential, and Implications of Additive Manufacturing, Atlantic Council, Washington, DC, 3, 1-16.
  • Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19(2), 171-209.
  • Christopher, M., & Lee, H. (2004). Mitigating supply chain risk through improved confidence. International journal of physical distribution & logistics management, 34(5), 388-396.
  • Creswell, J. W., Hanson, W. E. ve Plano Clark, V. (2007), Qualitative Research Designs: Selection and Implementation, The Counseling Psychologist, 35(2), 236-264.
  • Fuster, D. (2019). Qualitative Research: Hermeneutical Phenomenological Method. Propósitos y Representaciones, 7(1), 201-229. Doi: http://dx.doi.org/10.20511/pyr2019.v7n1.267.
  • General Electric. (2020). GE Digital. https://www.ge.com/digital/
  • Gökçe, Z. (2022). Wenger'in eylem-kimlik kuramını geliştirmesi sanal eylem birimi bireylerinin kişisel özellikleri ile odaklanma motivasyonlarının davranış gösterme davranışına etkisi (Doktora tezi). İstanbul Üniversitesi.
  • Greening, N. (2019). Phenomenological Research Methodology. Scientific Research Journal (SCIRJ), 7(5), 88-92.
  • Hancock, B., Ockleford, E. ve Windridge, K. (2009). An Introduction to Qualitative Research. The NIHR RDS for the East Midlands, Nottingham.
  • Hofmann, P., Samp, C., & Urbach, N. (2020). Robotic process automation. Electronic markets, 30(1), 99-106.
  • Hulla, M., Herstätter, P., Wolf, M. ve Ramsauer, C. (2021). Towards digitalization in production in SMEs – A qualitative study of challenges, competencies and requirements for trainings. Procedia CIRP 104, 887–892.
  • Kılıçarslan, A (2022). Algoritmik Ticaretin Yükselişi. M. Cihangir, S. Özer (Ed.), Dijital Çağda Küresel Politik Dönüşüm: Sistem, Aktörler, Güvenlik (1.baskı) içinde (s. 75-107). Çanakkale: Paradigma Akademi.
  • Kurfess, T. R. (Ed.). (2005). Robotics and automation handbook (Vol. 414). Boca Raton, FL: CRC press.
  • Lee, J., Bagheri, B., & Kao, H. A. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18-23.
  • Lee, J., Lapira, E., Bagheri, B., & Kao, H. A. (2013). Recent advances and trends in predictive manufacturing systems in big data environment. Manufacturing letters, 1(1), 38-41.
  • Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Hung Byers, A. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute.
  • Maresova, P., Soukal, I., Svobodova, L., Hedvicakova, M., Javanmardi, E., Selamat, A., & Krejcar, O. (2018).
  • Consequences of industry 4.0 in business and economics. Economies, 6(3), 46.Marshall, M. N. (1996). Sampling For Qualitative Research. Family Practice, 13(6), 522-526.
  • Monczka, R. M., Handfield, R. B., Giunipero, L. C., & Patterson, J. L. (2020). Purchasing and supply chain management. Cengage Learning.
  • Önbıçak, E. H. ve Telli, S. G. (2022). Kobi’lerde Satış Sonrası Hizmetlerin Dijitalleşmesi: Makine İmalat Sektörü İzmir İli Örneği. Journal of Business in The Digital Age, 5(1), 1-15.
  • Özsoylu, A. F. (2017). Endüstri 4.0. Çukurova Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 21(1), 41-64.
  • Pirim, A. G. H. (2006). Yapay zeka. Yaşar Üniversitesi E-Dergisi, 1(1), 81-93.
  • Polat, A. (2022). Nitel araştırmalarda yarı-yapılandırılmış görüşme soruları: Soru form ve türleri, nitelikler ve sıralama. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 22(Özel Sayı 2), 161-182.
  • Porter, M. E., & Heppelmann, J. E. (2014). How smart, connected products are transforming competition. Harvard Business Review, 92(11), 64-88.
  • Provost, F., & Fawcett, T. (2013). Data science and its relationship to big data and data-driven decision making. Big data, 1(1), 51-59.
  • Rifkin, J. (2014). The zero marginal cost society: The internet of things, the collaborative commons, and the eclipse of capitalism. St. Martin's Press.
  • Schneier, B. (2015). Data and Goliath: The hidden battles to collect your data and control your world. WW Norton & Company.
  • Schwab, K. (2017). The fourth industrial revolution. Currency.
  • Siemens. (2020). Siemens Digital Enterprise Suite. https://new.siemens.com/global/en/products/automation.html
  • Starks, H., & Trinidad, S. B. (2007). Choose your method: a comparison of phenomenology, discourse analysis, and grounded theory. Qualitative Health Research, 17(10), 1372-1380.
  • Üstündağ, A. ve Çevikcan, E. (2017). Endüstri 4.0: dijital dönüşümün yönetilmesi . Springer.
  • Ong, S. K., Yuan, M. L., & Nee, A. Y. (2008). Augmented reality applications in manufacturing: a survey. International journal of production research, 46(10), 2707-2742.
  • Warshaw, L. (2017). Industry 4.0 and the digital twin: Manufacturing meets its match. Retrieved January, 23, 2019.
  • Westerman, G., Bonnet, D., & McAfee, A. (2014). The nine elements of digital transformation. MIT Sloan Management Review, 55(3), 1-6.
  • Westerman, G., Calméjane, C., Bonnet, D., Ferraris, P., & McAfee, A. (2011). Digital Transformation: A roadmap for billion-dollar organizations. MIT Center for digital business and capgemini consulting, 1, 1-68.
  • Yıldırım, A. ve Şimşek, H. (2021). Sosyal Bilimlerde Nitel Araştırma Yöntemleri. Seçkin Yayıncılık, 12. Baskı, Ankara.
  • Yıldırım, B. (2020), “İşletmelerde Dijital Dönüşüm Süreci: Nitel Bir Araştırma”, Ekonomi Maliye İşletme Dergisi, 3(2):204-223.
  • Zhang, L., Luo, Y., Tao, F., Li, B. H., Ren, L., Zhang, X., & Liu, Y. (2014). Cloud manufacturing: a new manufacturing paradigm. Enterprise Information Systems, 8(2), 167-187.
  • Zonta, T., Da Costa, C. A., da Rosa Righi, R., de Lima, M. J., da Trindade, E. S., & Li, G. P. (2020). Predictive maintenance in the Industry 4.0: A systematic literature review. Computers & Industrial Engineering, 150, 106889.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Strategy, Management and Organisational Behaviour (Other)
Journal Section Articles
Authors

Ebru Demirel 0000-0001-5073-0683

Cihan Yaralı 0000-0002-8296-051X

Publication Date December 27, 2023
Submission Date October 21, 2023
Acceptance Date December 26, 2023
Published in Issue Year 2023 100th Anniversary Special Issue

Cite

APA Demirel, E., & Yaralı, C. (2023). İmalat İşletmelerinin Dijitalleşme Süreçleri Üzerine Nitel Bir Çalışma. Journal of Management and Economics21-41. https://doi.org/10.18657/yonveek.1379397