Review
BibTex RIS Cite

Connecting the Wings of Dynamism: Bibliometric Analysis of Artificial Intelligence and Entrepreneurship Fields

Year 2024, Volume: 10 Issue: 2, 148 - 157, 30.12.2024
https://doi.org/10.51803/yssr.1535749

Abstract

This study aims to create a holistic viewpoint by concentrating on two dynamic areas of artificial intelligence and entrepreneurship with bibliometric analysis. The concept of artificial intelligence, which is constantly heard as the digital world gradually penetrates our lives, and entrepreneurship, which is referred to as the atomic element of the economic infrastructure, are addressed in the same pot with this research. The attitude of both areas against varying circumstances constitutes the essential basis of this examination. The view that the effectiveness in the areas can be increased with the synergy to be created between the two focuses is supported. With this intention, the study commences with an informative literature section, where the introductory elements of the areas are conveyed. Afterward, it tries to clarify why these zones need to be examined together. Following this, a bibliometric analysis study, frequently used to bring unfamiliar kinds of literature jointly, is conducted using data obtained from the Web of Science database and subjected to various analyses. In the last stage, the study is completed by examining these outputs and analyzes. As a result, conclusions support “the duo” can be investigated jointly. The study contributes to the idea that artificial intelligence and entrepreneurship are wings working in synchrony for the requirement of success.

References

  • REFERENCES
  • Audretsch, D. (2012). Entrepreneurship research. Management Decision, 50(5), 755–764. [CrossRef]
  • Ba, Z., Meng, K., Ma, Y., & Xia, Y. (2024). Discovering technological opportunities by identifying dynamic structure-coupling patterns and lead-lag distance between science and technology. Technological Forecasting and Social Change, 200, Article 123147. [CrossRef]
  • Badzińska, E. (2016). The concept of technological entrepreneurship: The example of business implementation. Entrepreneurial Business and Economics Review, 4(3), 57–72. [CrossRef]
  • Bickley, S. J., Macintyre, A., & Torgler, B. (2024). Artificial intelligence and big data in sustainable entrepreneurship. Journal of Economic Surveys, 1–43. [CrossRef]
  • Borges, A. F., Laurindo, F. J., Spínola, M. M., Gonçalves, R. F., & Mattos, C. A. (2021). The strategic use of artificial intelligence in the digital era: Systematic literature review and future research directions. International Journal of Information Management, 57, Article 102225. [CrossRef]
  • Camarillo, D. B., Krummel, T. M., & Salisbury Jr, J. K. (2004). Robotic technology in surgery: past, present, and future. The American Journal of Surgery, 188(4), 2–15. [CrossRef]
  • Camuffo, A., Gambardella, A., Messinese, D., Novelli, E., Paolucci, E., & Spina, C. (2024). A scientific approach to entrepreneurial decision‐making: Large‐scale replication and extension. Strategic Management Journal, 45(6), 1209–1237. [CrossRef]
  • Casson, M., & Casson, C. (2014). The history of entrepreneurship: Medieval origins of a modern phenomenon. Business History, 56(8), 1223–1242. [CrossRef]
  • Chandra, P., & Dong, A. (2018). The relation between knowledge accumulation and technical value in interdisciplinary technologies. Technological Forecasting and Social Change, 128, 235–244. [CrossRef]
  • Chaudhary, S., Dhir, A., Meenakshi, N., & Christofi, M. (2024). How small firms build resilience to ward off crises: a paradox perspective. Entrepreneurship & Regional Development, 36(1–2), 182–207. [CrossRef] Chavoushi, Z. H., Zali, M. R., Valliere, D., Faghih, N., Hejazi, R., & Dehkordi, A. M. (2021). Entrepreneurial alertness: A systematic literature review. Journal of Small Business & Entrepreneurship, 33(2), 123–152. [CrossRef] Chowdhary, K. R. (2020). Natural Language Processing. In: Fundamentals of Artificial Intelligence. Springer. [CrossRef]
  • Coali, A., Gambardella, A., & Novelli, E. (2024). Scientific decision-making, project selection and longer-term outcomes. Research Policy, 53(6), Article 105022. [CrossRef]
  • Coccia, M. (2024). The general theory of scientific variability for technological evolution. Science 6(2), Article 31. [CrossRef]
  • Copeland, J. (1993). Artificial intelligence: A philosophical introduction. John Wiley & Sons. Cui, Y. G., van Esch, P., & Phelan, S. (2024). How to build a competitive advantage for your brand using generative AI. Business Horizons, 67(5), 583–594. [CrossRef]
  • Çemberci, M., & Karakeçe, E. (2020). The role of fear on the entrepreneurial mindset. Journal of International Trade, Logistics and Law, 6(1), 158–163.
  • Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108–116.
  • de Mattos, C. S., Pellegrini, G., Hagelaar, G., & Dolfsma, W. (2024). Systematic literature review on technological transformation in SMEs: a transformation encompassing technology assimilation and business model innovation. Management Review Quarterly, 74(2), 1057–1095. [CrossRef]
  • Deshpande, A., & Kumar, M. (2018). Artificial intelligence for big data: Complete guide to automating big data solutions using artificial intelligence techniques. Packt Publishing Ltd. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. [CrossRef] Dubey, R., Gunasekaran, A., Childe, S. J., Bryde, D. J., Giannakis, M., Foropon, C., ... & Hazen, B. T. (2020). Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: A study of manufacturing organisations. International Journal of Production Economics, 226, Article 107599. [CrossRef]
  • Dyer, J. H., Gregersen, H. B., & Christensen, C. (2008). Entrepreneur behaviors, opportunity recognition, and the origins of innovative ventures. Strategic Entrepreneurship Journal, 2(4), 317–338. [CrossRef]
  • Eggers, J. P. (2012). Falling flat: Failed technologies and investment under uncertainty. Administrative Science Quarterly, 57(1), 47–80. [CrossRef]
  • Ertel, W. (2017). Introduction to artificial intelligence. Springer International Publishing, Cham. [CrossRef]
  • Felicetti, A. M., Corvello, V., & Ammirato, S. (2024). Digital innovation in entrepreneurial firms: a systematic literature review. Review of Managerial Science, 18(2), 315–362. [CrossRef]
  • Fossen, F. M., & Sorgner, A. (2021). Digitalization of work and entry into entrepreneurship. Journal of Business Research, 125, 548–563. [CrossRef]
  • Gan, Y. N., Li, D. D., Robinson, N., & Liu, J. P. (2022). Practical guidance on bibliometric analysis and mapping knowledge domains methodology–A summary. European Journal of Integrative Medicine, 56, Article 102203. [CrossRef]
  • Giuggioli, G., & Pellegrini, M. M. (2023). Artificial intelligence as an enabler for entrepreneurs: a systematic literature review and an agenda for future research. International Journal of Entrepreneurial Behavior & Research, 29(4), 816–837. [CrossRef]
  • Grundy, T. (2006). Rethinking and reinventing Michael Porter's five forces model. Strategic Change, 15(5), 213–229. [CrossRef]
  • Hannigan, T. R., Haans, R. F., Vakili, K., Tchalian, H., Glaser, V. L., Wang, M. S., ... & Jennings, P. D. (2019). Topic modeling in management research: Rendering new theory from textual data. Academy of Management Annals, 13(2), 586–632. [CrossRef]
  • Hébert, R. F., & Link, A. N. (2009). A history of entrepreneurship. Routledge. [CrossRef]
  • Helm, J. M., Swiergosz, A. M., Haeberle, H. S., Karnuta, J. M., Schaffer, J. L., Krebs, V. E., ... & Ramkumar, P. N. (2020). Machine learning and artificial intelligence: definitions, applications, and future directions. Current Reviews in Musculoskeletal Medicine, 13, 69–76. [CrossRef]
  • Hisrich, R. D., Peters, M. P., & Shepherd, D. A. (2017). Entrepreneurship. McGraw-Hill Education.
  • Horowitz, M. C., Allen, G. C., Kania, E. B., & Scharre, P. (2018). Strategic competition in an era of artificial intelligence. Center for a New American Security.
  • Hyytinen, A. (2021). Shared problem solving and design thinking in entrepreneurship research. Journal of Business Venturing Insights, 16, Article e00254. [CrossRef]
  • Jiang, Y., Li, X., Luo, H., Yin, S., & Kaynak, O. (2022). Quo vadis artificial intelligence?. Discover Artificial Intelligence, 2(1), Article 4. [CrossRef]
  • Ju, J., Ma, H., Wang, Z., & Zhu, X. (2024). Trade wars and industrial policy competitions: Understanding the US-China economic conflicts. Journal of Monetary Economics, 141, 42–58. [CrossRef]
  • Kamble, S., Rana, N. P., Gupta, S., Belhadi, A., Sharma, R., & Kulkarni, P. (2023). An effectuation and causation perspective on the role of design thinking practices and digital capabilities in platform-based ventures. Technological Forecasting and Social Change, 193, Article 122646. [CrossRef]
  • Koseoglu, M. A., Rahimi, R., Okumus, F., & Liu, J. (2016). Bibliometric studies in tourism. Annals of Tourism Research, 61, 180–198. [CrossRef]
  • Kraus, S., Breier, M., Lim, W. M., Dabić, M., Kumar, S., Kanbach, D., ... & Ferreira, J. J. (2022). Literature reviews as independent studies: guidelines for academic practice. Review of Managerial Science, 16(8), 2577–2595. [CrossRef]
  • Kraus, S., Roig-Tierno, N., & Bouncken, R. B. (2019). Digital innovation and venturing: an introduction into the digitalization of entrepreneurship. Review of Managerial Science, 13(3), 519–528. [CrossRef]
  • Kromidha, E., & Bachtiar, N. K. (2024). Developing entrepreneurial resilience from uncertainty as usual: a learning theory approach on readiness, response and opportunity. International Journal of Entrepreneurial Behavior & Research, 30(4), 1001–1022. [CrossRef]
  • Kubassova, O., Shaikh, F., Melus, C., & Mahler, M. (2021). History, current status, and future directions of artificial intelligence. Precision Medicine and Artificial Intelligence, 1–38. [CrossRef]
  • Leendertse, J., Schrijvers, M., & Stam, E. (2022). Measure twice, cut once: Entrepreneurial ecosystem metrics. Research Policy, 51(9), Article 104336. [CrossRef]
  • Lim, W. M., & Kumar, S. (2024). Guidelines for interpreting the results of bibliometric analysis: A sensemaking approach. Global Business and Organizational Excellence, 43(2), 17–26. [CrossRef] Lupp, D. (2023). Effectuation, causation, and machine learning in co-creating entrepreneurial opportunities. Journal of Business Venturing Insights, 19, Article e00355. [CrossRef]
  • Makridakis, S. (2017). The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms. Futures, 90, 46–60. [CrossRef]
  • Manoharan, G., Durai, S., Rajesh, G. A., & Ashtikar, S. P. (2024). A study on the application of expert systems as a support system for business decisions: A literature review. Artificial Intelligence and Knowledge Processing, 279–289. [CrossRef]
  • Marangunić, N., & Granić, A. (2015). Technology acceptance model: a literature review from 1986 to 2013. Universal Access in the Information Society, 14, 81–95. [CrossRef]
  • Mariani, M. M., Machado, I., & Nambisan, S. (2023). Types of innovation and artificial intelligence: A systematic quantitative literature review and research agenda. Journal of Business Research, 155, Article 113364. [CrossRef]
  • McBurney, M. K., & Novak, P. L. (2002, September). What is bibliometrics and why should you care?. In Proceedings. IEEE international professional communication conference (pp. 108–114). IEEE. [CrossRef]
  • McMullen, J. S., & Shepherd, D. A. (2006). Entrepreneurial action and the role of uncertainty in the theory of the entrepreneur. Academy of Management Review, 31(1), 132–152. [CrossRef]
  • Méndez-Picazo, M. T., Galindo-Martín, M. Á., & Ribeiro-Soriano, D. (2012). Governance, entrepreneurship and economic growth. Entrepreneurship & Regional Development, 24(9–10), 865–877. [CrossRef]
  • Metke, A. R., & Ekl, R. L. (2010). Security technology for smart grid networks. IEEE Transactions on Smart Grid, 1(1), 99–107. [CrossRef]
  • Molfino, R., Cepolina, F. E., Cepolina, E., Cepolina, E. M., & Cepolina, S. (2024). Robots trends and megatrends: artificial intelligence and the society. Industrial Robot: The International Journal of Robotics Research and Application, 51(1), 117–124. [CrossRef]
  • Montesinos López, O. A., Montesinos López, A., & Crossa, J. (2022). Fundamentals of artificial neural networks and deep learning. In Multivariate statistical machine learning methods for genomic prediction (pp. 379–425). Cham: Springer International Publishing. [CrossRef]
  • Moral-Muñoz, J. A., Herrera-Viedma, E., Santisteban-Espejo, A., & Cobo, M. J. (2020). Software tools for conducting bibliometric analysis in science: An up-to-date review. Profesional de la Información, 29(1), 1–20. [CrossRef] Mukherjee, D., Lim, W. M., Kumar, S., & Donthu, N. (2022). Guidelines for advancing theory and practice through bibliometric research. Journal of Business Research, 148, 101–115. [CrossRef]
  • Muthukrishnan, N., Maleki, F., Ovens, K., Reinhold, C., Forghani, B., & Forghani, R. (2020). Brief history of artificial intelligence. Neuroimaging Clinics of North America, 30(4), 393–399. [CrossRef]
  • Nambisan, S., Wright, M., & Feldman, M. (2019). The digital transformation of innovation and entrepreneurship: Progress, challenges and key themes. Research Policy, 48(8), Article 103773. [CrossRef]
  • Neumann, T. (2021). The impact of entrepreneurship on economic, social and environmental welfare and its determinants: a systematic review. Management Review Quarterly, 71(3), 553–584. [CrossRef]
  • Nilsson, N. J. (2009). The quest for artificial intelligence. Cambridge University Press.
  • Nti, I. K., Adekoya, A. F., Weyori, B. A., & Nyarko-Boateng, O. (2022). Applications of artificial intelligence in engineering and manufacturing: a systematic review. Journal of Intelligent Manufacturing, 33(6), 1581–1601. [CrossRef]
  • Obschonka, M., & Audretsch, D. B. (2020). Artificial intelligence and big data in entrepreneurship: a new era has begun. Small Business Economics, 55, 529–539. [CrossRef]
  • Öztürk, O., Kocaman, R., & Kanbach, D. K. (2024). How to design bibliometric research: an overview and a framework proposal. Review of Managerial Science, 18, 3333–3361. [CrossRef]
  • Porter, M. E (2008). The five competitive forces that shape strategy. Harvard Business Review, 86(1), 78–93.
  • Rahimi, R. A., & Oh, G. S. (2024). Beyond theory: a systematic review of strengths and limitations in technology acceptance models through an entrepreneurial lens. Journal of Marketing Analytics, 1–24. [CrossRef]
  • Reid, S. E., & Crawford, C. B. (2022). Understanding Entrepreneurial Vision. In Entrepreneurial Vision: A Guide for Charting and Implementing the Visioning Process (pp. 9–27). Cham: Springer International Publishing. [CrossRef] Sajovic, I., & Boh Podgornik, B. (2022). Bibliometric analysis of visualizations in computer graphics: a study. Sage Open, 12(1), 1–17. [CrossRef] Sarasvathy, S. D. (2001). Causation and effectuation: Toward a theoretical shift from economic inevitability to entrepreneurial contingency. Academy of Management Review, 26(2), 243–263. [CrossRef]
  • Shane, S. A., & Ulrich, K. T. (2004). 50th anniversary article: Technological innovation, product development, and entrepreneurship in management science. Management Science, 50(2), 133–144. [CrossRef]
  • Shao, Z., Yuan, S., Wang, Y., & Xu, J. (2022). Evolutions and trends of artificial intelligence (AI): research, output, influence and competition. Library Hi Tech, 40(3), 704–724. [CrossRef] Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics, 3, 54–70. [CrossRef]
  • Stam, E. (2018). Measuring entrepreneurial ecosystems. In Connor, A. O., Stam, E., Sussan, F., Audretsch, D. B., (Eds.), Entrepreneurial Ecosystems, (pp. 173–197), Springer. [CrossRef]
  • Steffen, V., de Oliveira, M. S., Brusamarello, C. Z., & Trojan, F. (2024). A new normalized index for ranking papers in systematic literature reviews. Decision Analytics Journal, 10, Article 100439. [CrossRef]
  • Tallman, S. B., & Koza, M. P. (2024). Global Strategy in Our Age of Chaos: How Will the Multinational Firm Survive?. In Elements in Business Strategy. Cambridge University Press. [CrossRef]
  • Tran, H., & Murphy, P. J. (2023). Generative artificial intelligence and entrepreneurial performance. Journal of Small Business and Enterprise Development, 30(5), 853–856. [CrossRef]
  • Usman, F. O., Eyo-Udo, N. L., Etukudoh, E. A., Odonkor, B., Ibeh, C. V., & Adegbola, A. (2024). A critical review of ai-driven strategies for entrepreneurial success. International Journal of Management & Entrepreneurship Research, 6(1), 200–215. [CrossRef]
  • Van Eck, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. [CrossRef]
  • Van Looy, B., Landoni, P., Callaert, J., Van Pottelsberghe, B., Sapsalis, E., & Debackere, K. (2011). Entrepreneurial effectiveness of European universities: An empirical assessment of antecedents and trade-offs. Research Policy, 40(4), 553–564. [CrossRef]
  • Vinchon, F., Lubart, T., Bartolotta, S., Gironnay, V., Botella, M., Bourgeois-Bougrine, S., ... & Gaggioli, A. (2023). Artificial Intelligence & Creativity: A manifesto for collaboration. The Journal of Creative Behavior, 57(4), 472–484. [CrossRef]
  • Warner, K. S., & Wäger, M. (2019). Building dynamic capabilities for digital transformation: An ongoing process of strategic renewal. Long range planning, 52(3), 326–349. [CrossRef]
  • Xu, H., Liu, J., Xu, X., Chen, J., & Yue, X. (2024). The impact of AI technology adoption on operational decision-making in competitive heterogeneous ports☆. Transportation Research Part E: Logistics and Transportation Review, 183, Article 103428. [CrossRef]
  • Yoon, W., & Kwon, S. (2023). The impact of technological and non-technological innovative activities on technological competitiveness. Journal of the Knowledge Economy, 14(1), 1–19. [CrossRef]
  • Zhu, Z., & Matsuno, K. (2016). Entrepreneurial proclivity: Its environmental conditions and growth consequences. Journal of Strategic Marketing, 24(1), 20–33. [CrossRef]
  • Zou, T. (2024). Technological innovation promotes industrial upgrading: An analytical framework. Structural Change and Economic Dynamics, 70, 150–167. [CrossRef]
  • Zupic, I., & Čater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods, 18(3), 429–472. [CrossRef] https://doi.org/10.1177/1094428114562

Dinamizmin Kanatlarını Birleştirmek: Yapay Zekâ ve Girişimcilik Alanlarının Bibliyometrik Analizi

Year 2024, Volume: 10 Issue: 2, 148 - 157, 30.12.2024
https://doi.org/10.51803/yssr.1535749

Abstract

Bu çalışma yapay zekâ ve girişimcilik gibi iki dinamik alana bibliyometrik analiz yöntemi ile odaklanarak bütünsel bir bakış açısı oluşturmayı hedeflemektedir. Dijital dünyanın hayatlara gün geçtikçe nüfuz etmesiyle sıklıkla duymaya başlanılan yapay zekâ kavramı ile ekonomik altyapının atomik unsuru olarak anılan girişimcilik, bu araştırma ile aynı pota içerisinde ele alınacaktır. Her iki alanın da değişken durumlarla olan ilişki biçimi bu çalışmanın temel dayanak noktasını oluşturmaktadır. İki odak arasında oluşturulabilecek sinerji ile alanlardaki etkinliğin artırılabileceği önerisi desteklenmektedir. Bu niyetle çalışma bilgilendirici literatür kısmıyla başlamakta, alanlara ait temel unsurlar aktarılmakta ve bu alanların neden birlikte irdelenmeye gerek duyulduğu açıklanmaya çalışılmaktadır. İkinci bölümde farklı literatürleri bir araya getirmede sıklıkla kullanılan bibliyometrik analiz çalışması ile Web of Science veri tabanı üzerinden çekilen veriler çeşitli analizlere tabi tutulmuştur. Son aşamada da bu çıktıların ve analizlerin irdelenmesi ile çalışma tamamlanmıştır. Netice itibariyle iki alanın ortak bir maksatla ele alınabileceği fikrini destekleyecek bulgular elde edilmiştir. Böylelikle başarıya erişimde yapay zekâ ile girişimcilik olgusunun senkronize çalışması gereken kanatlar olması gerektiği fikrine katkı sunulmuştur.

References

  • REFERENCES
  • Audretsch, D. (2012). Entrepreneurship research. Management Decision, 50(5), 755–764. [CrossRef]
  • Ba, Z., Meng, K., Ma, Y., & Xia, Y. (2024). Discovering technological opportunities by identifying dynamic structure-coupling patterns and lead-lag distance between science and technology. Technological Forecasting and Social Change, 200, Article 123147. [CrossRef]
  • Badzińska, E. (2016). The concept of technological entrepreneurship: The example of business implementation. Entrepreneurial Business and Economics Review, 4(3), 57–72. [CrossRef]
  • Bickley, S. J., Macintyre, A., & Torgler, B. (2024). Artificial intelligence and big data in sustainable entrepreneurship. Journal of Economic Surveys, 1–43. [CrossRef]
  • Borges, A. F., Laurindo, F. J., Spínola, M. M., Gonçalves, R. F., & Mattos, C. A. (2021). The strategic use of artificial intelligence in the digital era: Systematic literature review and future research directions. International Journal of Information Management, 57, Article 102225. [CrossRef]
  • Camarillo, D. B., Krummel, T. M., & Salisbury Jr, J. K. (2004). Robotic technology in surgery: past, present, and future. The American Journal of Surgery, 188(4), 2–15. [CrossRef]
  • Camuffo, A., Gambardella, A., Messinese, D., Novelli, E., Paolucci, E., & Spina, C. (2024). A scientific approach to entrepreneurial decision‐making: Large‐scale replication and extension. Strategic Management Journal, 45(6), 1209–1237. [CrossRef]
  • Casson, M., & Casson, C. (2014). The history of entrepreneurship: Medieval origins of a modern phenomenon. Business History, 56(8), 1223–1242. [CrossRef]
  • Chandra, P., & Dong, A. (2018). The relation between knowledge accumulation and technical value in interdisciplinary technologies. Technological Forecasting and Social Change, 128, 235–244. [CrossRef]
  • Chaudhary, S., Dhir, A., Meenakshi, N., & Christofi, M. (2024). How small firms build resilience to ward off crises: a paradox perspective. Entrepreneurship & Regional Development, 36(1–2), 182–207. [CrossRef] Chavoushi, Z. H., Zali, M. R., Valliere, D., Faghih, N., Hejazi, R., & Dehkordi, A. M. (2021). Entrepreneurial alertness: A systematic literature review. Journal of Small Business & Entrepreneurship, 33(2), 123–152. [CrossRef] Chowdhary, K. R. (2020). Natural Language Processing. In: Fundamentals of Artificial Intelligence. Springer. [CrossRef]
  • Coali, A., Gambardella, A., & Novelli, E. (2024). Scientific decision-making, project selection and longer-term outcomes. Research Policy, 53(6), Article 105022. [CrossRef]
  • Coccia, M. (2024). The general theory of scientific variability for technological evolution. Science 6(2), Article 31. [CrossRef]
  • Copeland, J. (1993). Artificial intelligence: A philosophical introduction. John Wiley & Sons. Cui, Y. G., van Esch, P., & Phelan, S. (2024). How to build a competitive advantage for your brand using generative AI. Business Horizons, 67(5), 583–594. [CrossRef]
  • Çemberci, M., & Karakeçe, E. (2020). The role of fear on the entrepreneurial mindset. Journal of International Trade, Logistics and Law, 6(1), 158–163.
  • Davenport, T. H., & Ronanki, R. (2018). Artificial intelligence for the real world. Harvard Business Review, 96(1), 108–116.
  • de Mattos, C. S., Pellegrini, G., Hagelaar, G., & Dolfsma, W. (2024). Systematic literature review on technological transformation in SMEs: a transformation encompassing technology assimilation and business model innovation. Management Review Quarterly, 74(2), 1057–1095. [CrossRef]
  • Deshpande, A., & Kumar, M. (2018). Artificial intelligence for big data: Complete guide to automating big data solutions using artificial intelligence techniques. Packt Publishing Ltd. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. [CrossRef] Dubey, R., Gunasekaran, A., Childe, S. J., Bryde, D. J., Giannakis, M., Foropon, C., ... & Hazen, B. T. (2020). Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: A study of manufacturing organisations. International Journal of Production Economics, 226, Article 107599. [CrossRef]
  • Dyer, J. H., Gregersen, H. B., & Christensen, C. (2008). Entrepreneur behaviors, opportunity recognition, and the origins of innovative ventures. Strategic Entrepreneurship Journal, 2(4), 317–338. [CrossRef]
  • Eggers, J. P. (2012). Falling flat: Failed technologies and investment under uncertainty. Administrative Science Quarterly, 57(1), 47–80. [CrossRef]
  • Ertel, W. (2017). Introduction to artificial intelligence. Springer International Publishing, Cham. [CrossRef]
  • Felicetti, A. M., Corvello, V., & Ammirato, S. (2024). Digital innovation in entrepreneurial firms: a systematic literature review. Review of Managerial Science, 18(2), 315–362. [CrossRef]
  • Fossen, F. M., & Sorgner, A. (2021). Digitalization of work and entry into entrepreneurship. Journal of Business Research, 125, 548–563. [CrossRef]
  • Gan, Y. N., Li, D. D., Robinson, N., & Liu, J. P. (2022). Practical guidance on bibliometric analysis and mapping knowledge domains methodology–A summary. European Journal of Integrative Medicine, 56, Article 102203. [CrossRef]
  • Giuggioli, G., & Pellegrini, M. M. (2023). Artificial intelligence as an enabler for entrepreneurs: a systematic literature review and an agenda for future research. International Journal of Entrepreneurial Behavior & Research, 29(4), 816–837. [CrossRef]
  • Grundy, T. (2006). Rethinking and reinventing Michael Porter's five forces model. Strategic Change, 15(5), 213–229. [CrossRef]
  • Hannigan, T. R., Haans, R. F., Vakili, K., Tchalian, H., Glaser, V. L., Wang, M. S., ... & Jennings, P. D. (2019). Topic modeling in management research: Rendering new theory from textual data. Academy of Management Annals, 13(2), 586–632. [CrossRef]
  • Hébert, R. F., & Link, A. N. (2009). A history of entrepreneurship. Routledge. [CrossRef]
  • Helm, J. M., Swiergosz, A. M., Haeberle, H. S., Karnuta, J. M., Schaffer, J. L., Krebs, V. E., ... & Ramkumar, P. N. (2020). Machine learning and artificial intelligence: definitions, applications, and future directions. Current Reviews in Musculoskeletal Medicine, 13, 69–76. [CrossRef]
  • Hisrich, R. D., Peters, M. P., & Shepherd, D. A. (2017). Entrepreneurship. McGraw-Hill Education.
  • Horowitz, M. C., Allen, G. C., Kania, E. B., & Scharre, P. (2018). Strategic competition in an era of artificial intelligence. Center for a New American Security.
  • Hyytinen, A. (2021). Shared problem solving and design thinking in entrepreneurship research. Journal of Business Venturing Insights, 16, Article e00254. [CrossRef]
  • Jiang, Y., Li, X., Luo, H., Yin, S., & Kaynak, O. (2022). Quo vadis artificial intelligence?. Discover Artificial Intelligence, 2(1), Article 4. [CrossRef]
  • Ju, J., Ma, H., Wang, Z., & Zhu, X. (2024). Trade wars and industrial policy competitions: Understanding the US-China economic conflicts. Journal of Monetary Economics, 141, 42–58. [CrossRef]
  • Kamble, S., Rana, N. P., Gupta, S., Belhadi, A., Sharma, R., & Kulkarni, P. (2023). An effectuation and causation perspective on the role of design thinking practices and digital capabilities in platform-based ventures. Technological Forecasting and Social Change, 193, Article 122646. [CrossRef]
  • Koseoglu, M. A., Rahimi, R., Okumus, F., & Liu, J. (2016). Bibliometric studies in tourism. Annals of Tourism Research, 61, 180–198. [CrossRef]
  • Kraus, S., Breier, M., Lim, W. M., Dabić, M., Kumar, S., Kanbach, D., ... & Ferreira, J. J. (2022). Literature reviews as independent studies: guidelines for academic practice. Review of Managerial Science, 16(8), 2577–2595. [CrossRef]
  • Kraus, S., Roig-Tierno, N., & Bouncken, R. B. (2019). Digital innovation and venturing: an introduction into the digitalization of entrepreneurship. Review of Managerial Science, 13(3), 519–528. [CrossRef]
  • Kromidha, E., & Bachtiar, N. K. (2024). Developing entrepreneurial resilience from uncertainty as usual: a learning theory approach on readiness, response and opportunity. International Journal of Entrepreneurial Behavior & Research, 30(4), 1001–1022. [CrossRef]
  • Kubassova, O., Shaikh, F., Melus, C., & Mahler, M. (2021). History, current status, and future directions of artificial intelligence. Precision Medicine and Artificial Intelligence, 1–38. [CrossRef]
  • Leendertse, J., Schrijvers, M., & Stam, E. (2022). Measure twice, cut once: Entrepreneurial ecosystem metrics. Research Policy, 51(9), Article 104336. [CrossRef]
  • Lim, W. M., & Kumar, S. (2024). Guidelines for interpreting the results of bibliometric analysis: A sensemaking approach. Global Business and Organizational Excellence, 43(2), 17–26. [CrossRef] Lupp, D. (2023). Effectuation, causation, and machine learning in co-creating entrepreneurial opportunities. Journal of Business Venturing Insights, 19, Article e00355. [CrossRef]
  • Makridakis, S. (2017). The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms. Futures, 90, 46–60. [CrossRef]
  • Manoharan, G., Durai, S., Rajesh, G. A., & Ashtikar, S. P. (2024). A study on the application of expert systems as a support system for business decisions: A literature review. Artificial Intelligence and Knowledge Processing, 279–289. [CrossRef]
  • Marangunić, N., & Granić, A. (2015). Technology acceptance model: a literature review from 1986 to 2013. Universal Access in the Information Society, 14, 81–95. [CrossRef]
  • Mariani, M. M., Machado, I., & Nambisan, S. (2023). Types of innovation and artificial intelligence: A systematic quantitative literature review and research agenda. Journal of Business Research, 155, Article 113364. [CrossRef]
  • McBurney, M. K., & Novak, P. L. (2002, September). What is bibliometrics and why should you care?. In Proceedings. IEEE international professional communication conference (pp. 108–114). IEEE. [CrossRef]
  • McMullen, J. S., & Shepherd, D. A. (2006). Entrepreneurial action and the role of uncertainty in the theory of the entrepreneur. Academy of Management Review, 31(1), 132–152. [CrossRef]
  • Méndez-Picazo, M. T., Galindo-Martín, M. Á., & Ribeiro-Soriano, D. (2012). Governance, entrepreneurship and economic growth. Entrepreneurship & Regional Development, 24(9–10), 865–877. [CrossRef]
  • Metke, A. R., & Ekl, R. L. (2010). Security technology for smart grid networks. IEEE Transactions on Smart Grid, 1(1), 99–107. [CrossRef]
  • Molfino, R., Cepolina, F. E., Cepolina, E., Cepolina, E. M., & Cepolina, S. (2024). Robots trends and megatrends: artificial intelligence and the society. Industrial Robot: The International Journal of Robotics Research and Application, 51(1), 117–124. [CrossRef]
  • Montesinos López, O. A., Montesinos López, A., & Crossa, J. (2022). Fundamentals of artificial neural networks and deep learning. In Multivariate statistical machine learning methods for genomic prediction (pp. 379–425). Cham: Springer International Publishing. [CrossRef]
  • Moral-Muñoz, J. A., Herrera-Viedma, E., Santisteban-Espejo, A., & Cobo, M. J. (2020). Software tools for conducting bibliometric analysis in science: An up-to-date review. Profesional de la Información, 29(1), 1–20. [CrossRef] Mukherjee, D., Lim, W. M., Kumar, S., & Donthu, N. (2022). Guidelines for advancing theory and practice through bibliometric research. Journal of Business Research, 148, 101–115. [CrossRef]
  • Muthukrishnan, N., Maleki, F., Ovens, K., Reinhold, C., Forghani, B., & Forghani, R. (2020). Brief history of artificial intelligence. Neuroimaging Clinics of North America, 30(4), 393–399. [CrossRef]
  • Nambisan, S., Wright, M., & Feldman, M. (2019). The digital transformation of innovation and entrepreneurship: Progress, challenges and key themes. Research Policy, 48(8), Article 103773. [CrossRef]
  • Neumann, T. (2021). The impact of entrepreneurship on economic, social and environmental welfare and its determinants: a systematic review. Management Review Quarterly, 71(3), 553–584. [CrossRef]
  • Nilsson, N. J. (2009). The quest for artificial intelligence. Cambridge University Press.
  • Nti, I. K., Adekoya, A. F., Weyori, B. A., & Nyarko-Boateng, O. (2022). Applications of artificial intelligence in engineering and manufacturing: a systematic review. Journal of Intelligent Manufacturing, 33(6), 1581–1601. [CrossRef]
  • Obschonka, M., & Audretsch, D. B. (2020). Artificial intelligence and big data in entrepreneurship: a new era has begun. Small Business Economics, 55, 529–539. [CrossRef]
  • Öztürk, O., Kocaman, R., & Kanbach, D. K. (2024). How to design bibliometric research: an overview and a framework proposal. Review of Managerial Science, 18, 3333–3361. [CrossRef]
  • Porter, M. E (2008). The five competitive forces that shape strategy. Harvard Business Review, 86(1), 78–93.
  • Rahimi, R. A., & Oh, G. S. (2024). Beyond theory: a systematic review of strengths and limitations in technology acceptance models through an entrepreneurial lens. Journal of Marketing Analytics, 1–24. [CrossRef]
  • Reid, S. E., & Crawford, C. B. (2022). Understanding Entrepreneurial Vision. In Entrepreneurial Vision: A Guide for Charting and Implementing the Visioning Process (pp. 9–27). Cham: Springer International Publishing. [CrossRef] Sajovic, I., & Boh Podgornik, B. (2022). Bibliometric analysis of visualizations in computer graphics: a study. Sage Open, 12(1), 1–17. [CrossRef] Sarasvathy, S. D. (2001). Causation and effectuation: Toward a theoretical shift from economic inevitability to entrepreneurial contingency. Academy of Management Review, 26(2), 243–263. [CrossRef]
  • Shane, S. A., & Ulrich, K. T. (2004). 50th anniversary article: Technological innovation, product development, and entrepreneurship in management science. Management Science, 50(2), 133–144. [CrossRef]
  • Shao, Z., Yuan, S., Wang, Y., & Xu, J. (2022). Evolutions and trends of artificial intelligence (AI): research, output, influence and competition. Library Hi Tech, 40(3), 704–724. [CrossRef] Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics, 3, 54–70. [CrossRef]
  • Stam, E. (2018). Measuring entrepreneurial ecosystems. In Connor, A. O., Stam, E., Sussan, F., Audretsch, D. B., (Eds.), Entrepreneurial Ecosystems, (pp. 173–197), Springer. [CrossRef]
  • Steffen, V., de Oliveira, M. S., Brusamarello, C. Z., & Trojan, F. (2024). A new normalized index for ranking papers in systematic literature reviews. Decision Analytics Journal, 10, Article 100439. [CrossRef]
  • Tallman, S. B., & Koza, M. P. (2024). Global Strategy in Our Age of Chaos: How Will the Multinational Firm Survive?. In Elements in Business Strategy. Cambridge University Press. [CrossRef]
  • Tran, H., & Murphy, P. J. (2023). Generative artificial intelligence and entrepreneurial performance. Journal of Small Business and Enterprise Development, 30(5), 853–856. [CrossRef]
  • Usman, F. O., Eyo-Udo, N. L., Etukudoh, E. A., Odonkor, B., Ibeh, C. V., & Adegbola, A. (2024). A critical review of ai-driven strategies for entrepreneurial success. International Journal of Management & Entrepreneurship Research, 6(1), 200–215. [CrossRef]
  • Van Eck, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. [CrossRef]
  • Van Looy, B., Landoni, P., Callaert, J., Van Pottelsberghe, B., Sapsalis, E., & Debackere, K. (2011). Entrepreneurial effectiveness of European universities: An empirical assessment of antecedents and trade-offs. Research Policy, 40(4), 553–564. [CrossRef]
  • Vinchon, F., Lubart, T., Bartolotta, S., Gironnay, V., Botella, M., Bourgeois-Bougrine, S., ... & Gaggioli, A. (2023). Artificial Intelligence & Creativity: A manifesto for collaboration. The Journal of Creative Behavior, 57(4), 472–484. [CrossRef]
  • Warner, K. S., & Wäger, M. (2019). Building dynamic capabilities for digital transformation: An ongoing process of strategic renewal. Long range planning, 52(3), 326–349. [CrossRef]
  • Xu, H., Liu, J., Xu, X., Chen, J., & Yue, X. (2024). The impact of AI technology adoption on operational decision-making in competitive heterogeneous ports☆. Transportation Research Part E: Logistics and Transportation Review, 183, Article 103428. [CrossRef]
  • Yoon, W., & Kwon, S. (2023). The impact of technological and non-technological innovative activities on technological competitiveness. Journal of the Knowledge Economy, 14(1), 1–19. [CrossRef]
  • Zhu, Z., & Matsuno, K. (2016). Entrepreneurial proclivity: Its environmental conditions and growth consequences. Journal of Strategic Marketing, 24(1), 20–33. [CrossRef]
  • Zou, T. (2024). Technological innovation promotes industrial upgrading: An analytical framework. Structural Change and Economic Dynamics, 70, 150–167. [CrossRef]
  • Zupic, I., & Čater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods, 18(3), 429–472. [CrossRef] https://doi.org/10.1177/1094428114562
There are 79 citations in total.

Details

Primary Language English
Subjects Political Science (Other)
Journal Section Makaleler
Authors

Ercan Karakeçe 0000-0003-0807-4496

Murat Çemberci 0000-0001-8569-4950

Publication Date December 30, 2024
Submission Date August 19, 2024
Acceptance Date October 16, 2024
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

APA Karakeçe, E., & Çemberci, M. (2024). Connecting the Wings of Dynamism: Bibliometric Analysis of Artificial Intelligence and Entrepreneurship Fields. Yildiz Social Science Review, 10(2), 148-157. https://doi.org/10.51803/yssr.1535749