Research Article
BibTex RIS Cite

Investigation of the Effect of RSW Parameters on the Hardness of DC01 Steel with Multiple Regression Analysis

Year 2023, Volume: 28 Issue: 2, 620 - 628, 31.08.2023
https://doi.org/10.53433/yyufbed.1171388

Abstract

This study made different resistance spot welding combinations on DC01 steel with welding parameters of 8-10-12 kA welding current and 1.96-2.94 kN electrode force. Microhardness measurements were carried out along base metal, heat affected zone and weld metal. The theoretical hardness value was calculated using the literature's formulas and compared with the obtained experimental results. With multiple regression analysis, the importance levels of the welding parameters on the hardness value were determined, and the model was established. Consequently, the microhardness value increased as the electrode force and welding current increased. While a higher hardness value was found in 12 kA-2.94 kN welding parameters compared to the theoretical value, lower values were obtained in other welding parameters. As a result of multiple regression analysis, the importance level of welding current on hardness was higher than electrode force.

References

  • Ada, H., Aksöz, S., Fındık, T., Çetinkaya, C., Bostan, B., & Candan, İ. (2016). API 5L X65 çeliklerinin mag kaynak yöntemi ile birleştirilmesinde, kaynak işleminin mikroyapı ve mekanik özelliklere etkisinin incelenmesi. Çukurova Üniversitesi Mühendislik-Mimarlik Fakültesi Dergisi, 31(ÖS1), 1–9. doi:10.21605/cukurovaummfd.311031
  • Aksöz, S., Ada, H., Fındık, T., Çetinkaya, C., Bostan, B., & Candan, İ. (2017). API 5L X65 çeliklerinin elektrik ark kaynak yöntemi ile birleştirilmesinde, kaynak işleminin mikroyapı ve mekanik özelliklere etkisinin incelenmesi. El-Cezeri, 4(1), 72-81. doi: 10.31202/ecjse.289639
  • Ambroziak, A., Tobota, A., Tokarz, K., & Kustron, P. (2011). Testing of thin-walled steel joints fabricated by spot welding and plug welding. Welding International, 25(4), 277–282. doi:10.1080/09507116.2010.540833
  • Andrade, D. G., Leitão, C., & Rodrigues, D. M. (2019). Influence of base material characteristics and process parameters on frictional heat generation during Friction Stir Spot Welding of steels. Journal of Manufacturing Processes, 43, 98–104. doi:10.1016/j.jmapro.2019.05.015
  • Bina, M. H., Jamali, M., Shamanian, M., & Sabet, H. (2014). Investigation on the resistance spot-welded austenitic/ferritic stainless steel. The International Journal of Advanced Manufacturing Technology, 75(9–12), 1371–1379. doi:10.1007/s00170-014-6220-x
  • Budiono, Y. K., & Martowibowo, S. Y. (2017). Optimization of resistance spot welding process using response surface methodology and simulated annealing. Manufacturing Technology, 17(4), 434–440. doi:10.21062/ujep/x.2017/a/1213-2489/MT/17/4/434
  • Daneshpour, S., Riekehr, S., Kocak, M., & Gerritsen, C. H. J. (2009). Mechanical and fatigue behaviour of laser and resistance spot welds in advanced high strength steels. Science and Technology of Welding and Joining, 14(1), 20–25. doi:10.1179/136217108X336298
  • Feujofack Kemda, B. V., Barka, N., Jahazi, M., & Osmani, D. (2020). Optimization of resistance spot welding process applied to A36 mild steel and hot dipped galvanized steel based on hardness and nugget geometry. The International Journal of Advanced Manufacturing Technology, 106(5), 2477–2491. doi:10.1007/s00170-019-04707-w
  • Fu, X., Chen, K., Liu, C., Wang, M., & Hua, X. (2022). Microstructure and mechanical properties of dissimilar friction stir lap welding between AZ31 Mg alloy and DC01 steel. Materials Characterization, 187, 111870. doi:10.1016/j.matchar.2022.111870
  • Gökçe, H. (2021). Modelling and optimization for thrust force, temperature and burr height in drilling of custom 450. Experimental Techniques, 46, 707–721. doi:10.1007/s40799-021-00510-z
  • Gökçe, H., & Biberci, M. A. (2022). Investigation of thrust force, drill bit temperature and burr height in the drilling of aluminum alloy used in ammunition wing drive systems. Experimental Techniques, 46(4), 691–705. doi:10.1007/s40799-021-00501-0
  • Gould, J. E., Khurana, S. P., & Li, T. (2006). Predictions of microstructures when welding automotive advanced high-strength steels. Welding Journal, 85(5), 111-116.
  • Holovenko, O., Ienco, M. G., Pastore, E., Pinasco, M. R., Matteis, P., Scavino, G., & Firrao, D. (2013). Microstructural and mechanical characterization of welded joints on innovative high-strength steels. La Metallurgia Italiana, 3, 3-12.
  • Khan, M. I., Kuntz, M. L., Biro, E., & Zhou, Y. (2008). Microstructure and mechanical properties of resistance spot welded advanced high strength steels. Materials Transactions, 49(7), 1629-1637. doi:10.2320/matertrans.MRA2008031
  • Kianersi, D., Mostafaei, A., & Amadeh, A. A. (2014). Resistance spot welding joints of AISI 316L austenitic stainless steel sheets: Phase transformations, mechanical properties and microstructure characterizations. Materials & Design, 61, 251–263. doi:10.1016/j.matdes.2014.04.075
  • Ma, C., Chen, D. L., Bhole, S. D., Boudreau, G., Lee, A., & Biro, E. (2008). Microstructure and fracture characteristics of spot-welded DP600 steel. Materials Science and Engineering: A, 485(1–2), 334–346. doi:10.1016/j.msea.2007.08.010
  • Mira-Aguiar, T., Verdera, D., Leitão, C., & Rodrigues, D. M. (2016). Tool assisted friction welding: A FSW related technique for the linear lap welding of very thin steel plates. Journal of Materials Processing Technology, 238, 73–80. doi:10.1016/j.jmatprotec.2016.07.006
  • Mitschang, P., Velthuis, R., & Didi, M. (2013). Induction spot welding of metal/CFRPC hybrid joints. Advanced Engineering Materials, 15(9), 804–813. doi:10.1002/adem.201200273
  • Pal, T. K., & Bhowmick, K. (2012). Resistance spot welding characteristics and high cycle fatigue behavior of DP 780 steel sheet. Journal of Materials Engineering and Performance, 21(2), 280–285. doi:10.1007/s11665-011-9850-2
  • Valera, J., Miguel, V., Martínez, A., Naranjo, J., & Cañas, M. (2017). Optimization of electrical parameters in Resistance Spot Welding of dissimilar joints of micro-alloyed steels TRIP sheets. Procedia Manufacturing, 13, 291–298. doi:10.1016/j.promfg.2017.09.074
  • Yavuz, M., Gökçe, H., Çiftçi, İ., Gökçe, H., Yavaş, Ç., & Şeker, U. (2020). Investigation of the effects of drill geometry on drilling performance and hole quality. The International Journal of Advanced Manufacturing Technology, 106(9), 4623–4633. doi:10.1007/s00170-019-04843-3
  • Yuan, X., Li, C., Chen, J., Li, X., Liang, X., & Pan, X. (2017). Resistance spot welding of dissimilar DP600 and DC54D steels. Journal of Materials Processing Technology, 239, 31–41. doi:10.1016/j.jmatprotec.2016.08.012

DC01 Çeliğinin Sertliğine NDK Parametrelerinin Etkisinin Çoklu Regresyon Analiziyle İncelenmesi

Year 2023, Volume: 28 Issue: 2, 620 - 628, 31.08.2023
https://doi.org/10.53433/yyufbed.1171388

Abstract

Bu çalışmada DC01 çeliğine 8-10-12 kA kaynak akımı ve 1.96-2.94 kN elektrot kuvveti kaynak parametrelerinde farklı nokta direnç kaynak işlemleri uygulanmıştır. Ana metal, ısının tesiri altındaki bölge ve kaynak metali boyunca mikrosertlik ölçümleri gerçekleştirilmiştir. Literatürde kullanılan formüller ile teorik sertlik değeri hesaplanmış ve elde edilen deneysel sonuçlar ile karşılaştırılmıştır. Çoklu regresyon analizi ile kaynak parametrelerinin sertlik değeri üzerindeki önem düzeyleri belirlenmiş ve model kurulmuştur. Sonuç olarak kaynak akımı ve elektrot kuvveti arttıkça mikrosertlik değeri artmıştır. 12 kA-2.94 kN kaynak parametrelerinde teorik değere göre daha yüksek sertlik değeri bulunurken, diğer kaynak parametrelerinde daha düşük değerler elde edilmiştir. Çoklu regresyon analizi sonucunda kaynak akımının sertlik üzerindeki önem düzeyi elektrot kuvvetinden daha yüksek çıkmıştır.

References

  • Ada, H., Aksöz, S., Fındık, T., Çetinkaya, C., Bostan, B., & Candan, İ. (2016). API 5L X65 çeliklerinin mag kaynak yöntemi ile birleştirilmesinde, kaynak işleminin mikroyapı ve mekanik özelliklere etkisinin incelenmesi. Çukurova Üniversitesi Mühendislik-Mimarlik Fakültesi Dergisi, 31(ÖS1), 1–9. doi:10.21605/cukurovaummfd.311031
  • Aksöz, S., Ada, H., Fındık, T., Çetinkaya, C., Bostan, B., & Candan, İ. (2017). API 5L X65 çeliklerinin elektrik ark kaynak yöntemi ile birleştirilmesinde, kaynak işleminin mikroyapı ve mekanik özelliklere etkisinin incelenmesi. El-Cezeri, 4(1), 72-81. doi: 10.31202/ecjse.289639
  • Ambroziak, A., Tobota, A., Tokarz, K., & Kustron, P. (2011). Testing of thin-walled steel joints fabricated by spot welding and plug welding. Welding International, 25(4), 277–282. doi:10.1080/09507116.2010.540833
  • Andrade, D. G., Leitão, C., & Rodrigues, D. M. (2019). Influence of base material characteristics and process parameters on frictional heat generation during Friction Stir Spot Welding of steels. Journal of Manufacturing Processes, 43, 98–104. doi:10.1016/j.jmapro.2019.05.015
  • Bina, M. H., Jamali, M., Shamanian, M., & Sabet, H. (2014). Investigation on the resistance spot-welded austenitic/ferritic stainless steel. The International Journal of Advanced Manufacturing Technology, 75(9–12), 1371–1379. doi:10.1007/s00170-014-6220-x
  • Budiono, Y. K., & Martowibowo, S. Y. (2017). Optimization of resistance spot welding process using response surface methodology and simulated annealing. Manufacturing Technology, 17(4), 434–440. doi:10.21062/ujep/x.2017/a/1213-2489/MT/17/4/434
  • Daneshpour, S., Riekehr, S., Kocak, M., & Gerritsen, C. H. J. (2009). Mechanical and fatigue behaviour of laser and resistance spot welds in advanced high strength steels. Science and Technology of Welding and Joining, 14(1), 20–25. doi:10.1179/136217108X336298
  • Feujofack Kemda, B. V., Barka, N., Jahazi, M., & Osmani, D. (2020). Optimization of resistance spot welding process applied to A36 mild steel and hot dipped galvanized steel based on hardness and nugget geometry. The International Journal of Advanced Manufacturing Technology, 106(5), 2477–2491. doi:10.1007/s00170-019-04707-w
  • Fu, X., Chen, K., Liu, C., Wang, M., & Hua, X. (2022). Microstructure and mechanical properties of dissimilar friction stir lap welding between AZ31 Mg alloy and DC01 steel. Materials Characterization, 187, 111870. doi:10.1016/j.matchar.2022.111870
  • Gökçe, H. (2021). Modelling and optimization for thrust force, temperature and burr height in drilling of custom 450. Experimental Techniques, 46, 707–721. doi:10.1007/s40799-021-00510-z
  • Gökçe, H., & Biberci, M. A. (2022). Investigation of thrust force, drill bit temperature and burr height in the drilling of aluminum alloy used in ammunition wing drive systems. Experimental Techniques, 46(4), 691–705. doi:10.1007/s40799-021-00501-0
  • Gould, J. E., Khurana, S. P., & Li, T. (2006). Predictions of microstructures when welding automotive advanced high-strength steels. Welding Journal, 85(5), 111-116.
  • Holovenko, O., Ienco, M. G., Pastore, E., Pinasco, M. R., Matteis, P., Scavino, G., & Firrao, D. (2013). Microstructural and mechanical characterization of welded joints on innovative high-strength steels. La Metallurgia Italiana, 3, 3-12.
  • Khan, M. I., Kuntz, M. L., Biro, E., & Zhou, Y. (2008). Microstructure and mechanical properties of resistance spot welded advanced high strength steels. Materials Transactions, 49(7), 1629-1637. doi:10.2320/matertrans.MRA2008031
  • Kianersi, D., Mostafaei, A., & Amadeh, A. A. (2014). Resistance spot welding joints of AISI 316L austenitic stainless steel sheets: Phase transformations, mechanical properties and microstructure characterizations. Materials & Design, 61, 251–263. doi:10.1016/j.matdes.2014.04.075
  • Ma, C., Chen, D. L., Bhole, S. D., Boudreau, G., Lee, A., & Biro, E. (2008). Microstructure and fracture characteristics of spot-welded DP600 steel. Materials Science and Engineering: A, 485(1–2), 334–346. doi:10.1016/j.msea.2007.08.010
  • Mira-Aguiar, T., Verdera, D., Leitão, C., & Rodrigues, D. M. (2016). Tool assisted friction welding: A FSW related technique for the linear lap welding of very thin steel plates. Journal of Materials Processing Technology, 238, 73–80. doi:10.1016/j.jmatprotec.2016.07.006
  • Mitschang, P., Velthuis, R., & Didi, M. (2013). Induction spot welding of metal/CFRPC hybrid joints. Advanced Engineering Materials, 15(9), 804–813. doi:10.1002/adem.201200273
  • Pal, T. K., & Bhowmick, K. (2012). Resistance spot welding characteristics and high cycle fatigue behavior of DP 780 steel sheet. Journal of Materials Engineering and Performance, 21(2), 280–285. doi:10.1007/s11665-011-9850-2
  • Valera, J., Miguel, V., Martínez, A., Naranjo, J., & Cañas, M. (2017). Optimization of electrical parameters in Resistance Spot Welding of dissimilar joints of micro-alloyed steels TRIP sheets. Procedia Manufacturing, 13, 291–298. doi:10.1016/j.promfg.2017.09.074
  • Yavuz, M., Gökçe, H., Çiftçi, İ., Gökçe, H., Yavaş, Ç., & Şeker, U. (2020). Investigation of the effects of drill geometry on drilling performance and hole quality. The International Journal of Advanced Manufacturing Technology, 106(9), 4623–4633. doi:10.1007/s00170-019-04843-3
  • Yuan, X., Li, C., Chen, J., Li, X., Liang, X., & Pan, X. (2017). Resistance spot welding of dissimilar DP600 and DC54D steels. Journal of Materials Processing Technology, 239, 31–41. doi:10.1016/j.jmatprotec.2016.08.012
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Engineering and Architecture / Mühendislik ve Mimarlık
Authors

Muhammed Elitaş 0000-0001-5358-1783

Publication Date August 31, 2023
Submission Date September 5, 2022
Published in Issue Year 2023 Volume: 28 Issue: 2

Cite

APA Elitaş, M. (2023). DC01 Çeliğinin Sertliğine NDK Parametrelerinin Etkisinin Çoklu Regresyon Analiziyle İncelenmesi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(2), 620-628. https://doi.org/10.53433/yyufbed.1171388