BibTex RIS Cite

The Effect of Temperature on Shoot Development in Soilless Rose Cultivation

Year 2016, Volume: 26 Issue: 3, 396 - 405, 30.09.2016

Abstract

Temperature is one of the many factors claimed to have an impact on growth cycle of rose. The influence of temperature in the range of 17-24°C on bud break, shoot location, shoot growth (i.e. stem length, diameter of stem, opening date of unfolded leaves, development time of shoot,) and fresh and dry weight of stem and leaves on the rose cultivar “Akito” was studied. Bud break in this study is found to be correlated with the temperature. While the number of days to bud breaks decreased when the temperature increased, total number of bud break was found to be higher at low temperature than the high temperature. The results showed no significant impact of temperature on the location of shoots. Temperature, however, was found to be one of the factors affecting the blindness and flowering status of the shoots of roses. In this study, comportment with a temperature 20.5ºC is found to be the best in terms of the number of shoots reached the flowering stages. Shoots grown faster in the high temperature, but final shoot length at the harvesting time was found to be shorter at high temperature than at low temperature. Stem diameter of roses grown in the lower temperature were thicker than those grown at high temperature at the harvesting time. The number of days from cut back to flowering decreased with increasing temperature. High temperature speeded up leaves unfolding and therefore had an effect on leaves unfolding dates, but there was no evidences suggesting temperature had an effect on total number of leaves at the harvesting time. This study which found relationship between temperature and shoots growth time indicates that it is possible to decrease shoot development time by increasing temperature. The study which also found statistically significant relationship between temperature and flower stages indicates that, higher temperature resulted in smaller flower stages.

References

  • Brown WW., Ormrod DP (1980). Soil temperature effects on greenhouse roses in relation to air temperature and nutrition. J. Amer. Soc. Hort. Sci. 105 (1): 57-59.
  • De Jong J (1978). Dry storage and subsequent recovery of cut gerbera flowers, an aid in the selection for longevity. Scientia Hort. 9: 389-397.
  • De Vries DP., Smeets L (1979). Effects of temperature on growth and development of hybrid tea-rose seedlings. Scientia Hortic. 11: 261 – 268.
  • De Vries DP., Smeets L., Lidwien AM Dubois (1980). Genetic variation for the time of first flower and shoot length in hybrid tea-rose seedling populations under a range of temperatures. Scientia Horti., 13: 61 – 66.
  • De Vries DP., Smeets L., Lidwien AM Dubois (1982). Interaction of temperature and light on growth and development of hybrid tea-rose seedlings, with reference to breeding for low-energy requirements. Scientia Horti., 17: 377 – 382.
  • Dole JM., Wilkins HF (1999). Floriculture: Principles and Species. Prentice Hall Inc., New Jersey, USA, 495- 508.
  • Gudin S (2000). Rose genetics and breeding. Plant Breed. Rev. 17: 159 – 189.
  • Hazar D., Baktır I (2014). Topraksız Tarım Kesme Gül Yetiştiriciliği. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 17(2), Özel Sayı 21-28, 2013
  • Hveslof-Eide K (1991). The effect of temperature, daylength and irradiance on the growth of mother plants of Nephrolepis exaltata (L.) Schott and on the subsequent growth in vitro of runner tip explants. Scientia Hortic. 47: 137 – 147.
  • Karlsson MG., Heins RD., Erwin JE., Berghage RD., Carlson WH., Biernbaum JA (1989). Irradiance and temperature effects on time of development and flower size in chrysanthemum. Scientica Horticulturae, vol. 39, issue 3, pages 257-267.
  • Kazaz S., Karagüzel Ö., Aydınşakir K., Kaya AS (2010). Topraksız Kültürda Kesme Gül Yetiştiriciliği. IV. Süs Bitkileri Kongresi Bildiri Kitabı, sayfa: 622-631.
  • Khosh-Khui M., Teixeira da Silva JA (2006). In vitro Culture of Rosa species. In: Teixeira da Silva, J.A. (Ed.), Floriculture, Ornamental and Plant Biotechnology, Advances and Topical Issues, vol.2. Global Science Books, Ltd., UK, pp. 516-526.
  • Laws N (2002). World Commerce In Cut Flowers and Roses. FloraCulture International.
  • Marcelis – van Acker CAM (1994). Axillary bud development in rose. Dissertation Agric. Univ. Wageningen, The Netherlands. 131pp.
  • Mercurio, G., 2007. Cut Rose Cultivation Around the World. First Edition, Schreurs, The Nedherlands, 256 p.
  • Moe R., Kristoffersen T (1969). The effect of temperature and light on growth and flowering of Rosa ‘Baccara’ in greenhouses. Acta Hortic. 14: 157 – 163.
  • Moe R (1971). Factors affecting flower abortion and malformation in roses. Physiol. Plant. 24: 291 – 300.
  • Moe R (1972). Effect of day length, light intensity, and temperature on growth and flowering in roses. J. Am. Soc. Hort. Sci. 97: 796 - 800.
  • Moe R (1973). Propagation, growth and flowering of potted roses. Acta Hortic. 33: 35 – 50.
  • Moss GI (1983). Rootzone warming as a means to save energy in production of greenhouse crops in Australia. Acta Hort. 133: 31 – 38.
  • Moss GI (1984). The effect of rootzone warming on the yield and quality of roses grown in hydroponic system. J. Hort. Sci. 59(4): 549 – 558.
  • Moss GI., Dagleish R (1984). Increasing returnes from roses with root-zone warming. J. Amer. Soc. Hort. Sci. 109(6): 893 – 898.
  • Porter JR., Delecolle R (1988). Interaction of temperature with other environmental factors controlling the development of plants. In: Plants and temperature (S.P. Long & F.I. Woodward, eds). Symp. Soc. Exp. Biol. 42. Company of Biologists, Cambrige, pp. 133 – 156.
  • Van den Berg GA (1987). Influence of temperature on bud-break, shoot growth, flower bud atropy and winter production of glasshouse roses. Dissertation Agric. Univ. Wageningen, 170pp.

Topraksız Gül Yetiştiriciliğinde Sıcaklık Uygulamalarının Sürgün Gelişimi Üzerine Etkileri

Year 2016, Volume: 26 Issue: 3, 396 - 405, 30.09.2016

Abstract

Sıcaklık, gülün yetişme periyodunda etkili olan faktörlerden birisidir. Bu çalışmada, 17, 20.5 ve 24°C sıcaklık değerlerinin “Akito” gül çeşidinde gözlerin uyanması, sürgünlerin çıkış yeri, sürgün gelişimi (çiçek sapı uzunluğu, çiçek sapı çapı, yaprakların açılma zamanı), çiçek sapı ve yaprak, taze ve kuru ağırlığı üzerine etkileri araştırılmıştır. Gözlerin uyanmasının sıcaklıkla ilgisi olduğu tespit edilmiş, gözlerin uyanması için geçen sürenin artan sıcaklıkla azaldığı ve uyanan göz sayısının da düşük sıcaklıkta en fazla olduğu saptanmıştır. Çalışmada 20.5ºC sıcaklıkta yetişen güllerin çiçeklenme aşamasına ulaşabilen sürgün sayısının en fazla olduğu tespit edilmiştir. Sürgün gelişimi yüksek sıcaklıkta hızlı olmuş fakat hasat zamanındaki çiçek sapı uzunluğu yüksek sıcaklıkta yetişen güllerde düşük sıcaklıkta yetişenlere göre daha kısa olarak ölçülmüştür. Hasat zamanı yapılan ölçümlerde çiçek sapı çapının da düşük sıcaklıkta yetişen güllerde, yüksek sıcaklıkta yetişenlere göre daha yüksek bulunmuştur. Yüksek sıcaklık, yaprakların açılmasını hızlandırmış, böylece yaprakların açılmaya kadar geçen süreye etkisi saptanmıştır. Ancak hasat zamanındaki yaprak sayısına etkisinin olmadığı görülmüştür. Bu çalışmada, sürgün gelişim süresinin sıcaklık değerinin artmasıyla ters orantılı olarak azaldığı belirlenmiştir.

References

  • Brown WW., Ormrod DP (1980). Soil temperature effects on greenhouse roses in relation to air temperature and nutrition. J. Amer. Soc. Hort. Sci. 105 (1): 57-59.
  • De Jong J (1978). Dry storage and subsequent recovery of cut gerbera flowers, an aid in the selection for longevity. Scientia Hort. 9: 389-397.
  • De Vries DP., Smeets L (1979). Effects of temperature on growth and development of hybrid tea-rose seedlings. Scientia Hortic. 11: 261 – 268.
  • De Vries DP., Smeets L., Lidwien AM Dubois (1980). Genetic variation for the time of first flower and shoot length in hybrid tea-rose seedling populations under a range of temperatures. Scientia Horti., 13: 61 – 66.
  • De Vries DP., Smeets L., Lidwien AM Dubois (1982). Interaction of temperature and light on growth and development of hybrid tea-rose seedlings, with reference to breeding for low-energy requirements. Scientia Horti., 17: 377 – 382.
  • Dole JM., Wilkins HF (1999). Floriculture: Principles and Species. Prentice Hall Inc., New Jersey, USA, 495- 508.
  • Gudin S (2000). Rose genetics and breeding. Plant Breed. Rev. 17: 159 – 189.
  • Hazar D., Baktır I (2014). Topraksız Tarım Kesme Gül Yetiştiriciliği. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 17(2), Özel Sayı 21-28, 2013
  • Hveslof-Eide K (1991). The effect of temperature, daylength and irradiance on the growth of mother plants of Nephrolepis exaltata (L.) Schott and on the subsequent growth in vitro of runner tip explants. Scientia Hortic. 47: 137 – 147.
  • Karlsson MG., Heins RD., Erwin JE., Berghage RD., Carlson WH., Biernbaum JA (1989). Irradiance and temperature effects on time of development and flower size in chrysanthemum. Scientica Horticulturae, vol. 39, issue 3, pages 257-267.
  • Kazaz S., Karagüzel Ö., Aydınşakir K., Kaya AS (2010). Topraksız Kültürda Kesme Gül Yetiştiriciliği. IV. Süs Bitkileri Kongresi Bildiri Kitabı, sayfa: 622-631.
  • Khosh-Khui M., Teixeira da Silva JA (2006). In vitro Culture of Rosa species. In: Teixeira da Silva, J.A. (Ed.), Floriculture, Ornamental and Plant Biotechnology, Advances and Topical Issues, vol.2. Global Science Books, Ltd., UK, pp. 516-526.
  • Laws N (2002). World Commerce In Cut Flowers and Roses. FloraCulture International.
  • Marcelis – van Acker CAM (1994). Axillary bud development in rose. Dissertation Agric. Univ. Wageningen, The Netherlands. 131pp.
  • Mercurio, G., 2007. Cut Rose Cultivation Around the World. First Edition, Schreurs, The Nedherlands, 256 p.
  • Moe R., Kristoffersen T (1969). The effect of temperature and light on growth and flowering of Rosa ‘Baccara’ in greenhouses. Acta Hortic. 14: 157 – 163.
  • Moe R (1971). Factors affecting flower abortion and malformation in roses. Physiol. Plant. 24: 291 – 300.
  • Moe R (1972). Effect of day length, light intensity, and temperature on growth and flowering in roses. J. Am. Soc. Hort. Sci. 97: 796 - 800.
  • Moe R (1973). Propagation, growth and flowering of potted roses. Acta Hortic. 33: 35 – 50.
  • Moss GI (1983). Rootzone warming as a means to save energy in production of greenhouse crops in Australia. Acta Hort. 133: 31 – 38.
  • Moss GI (1984). The effect of rootzone warming on the yield and quality of roses grown in hydroponic system. J. Hort. Sci. 59(4): 549 – 558.
  • Moss GI., Dagleish R (1984). Increasing returnes from roses with root-zone warming. J. Amer. Soc. Hort. Sci. 109(6): 893 – 898.
  • Porter JR., Delecolle R (1988). Interaction of temperature with other environmental factors controlling the development of plants. In: Plants and temperature (S.P. Long & F.I. Woodward, eds). Symp. Soc. Exp. Biol. 42. Company of Biologists, Cambrige, pp. 133 – 156.
  • Van den Berg GA (1987). Influence of temperature on bud-break, shoot growth, flower bud atropy and winter production of glasshouse roses. Dissertation Agric. Univ. Wageningen, 170pp.
There are 24 citations in total.

Details

Journal Section Articles
Authors

Pembe Çürük This is me

Publication Date September 30, 2016
Published in Issue Year 2016 Volume: 26 Issue: 3

Cite

APA Çürük, P. (2016). The Effect of Temperature on Shoot Development in Soilless Rose Cultivation. Yuzuncu Yıl University Journal of Agricultural Sciences, 26(3), 396-405.
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.