Research Article
BibTex RIS Cite

N-Fikser İçeren Biyolojik Gübrenin Akdeniz İklimi Koşullarında Mikrobiyolojik ve Biyokimyasal Toprak Özellikleri ile Mısır Verimine Etkisi

Year 2019, Volume: 56 Issue: 4, 505 - 521, 31.12.2019
https://doi.org/10.20289/zfdergi.559383

Abstract

Amaç: Bu çalışmada topraklara, havanın serbest azotunu (N2)
bağlama yeteneğine sahip organizmalardan oluşan (Azospirillum sp., Azorhizobium
sp. ve Azoarcus sp.) ticari bir
preparatın, Akdeniz iklimi etkisi altında bulunan Typic Xerofluvent özellikteki
toprakta etkinlik potansiyelleri ile mevcut biyolojik özellikleri üzerine
etkileri araştırılmıştır.



Materyal ve Metot: Biyolojik
gübre uygulamalı ve uygulamasız parsellere (0-0.5 g ha-1; BG0-BG1),
3 doz kimyasal azotlu gübre (0-125-250 kg N ha-1; N0-N1-N2)
uygulamalarının, toprağın mikrobiyolojik (mikrobiyal biyokütle karbonu, MBC;
toprak solunumu, BSR; azot mineralizasyonu, Nmin; genel bakteri
sayısı, GB, Azospirillum sp. sayısı,
AZO) ve biyokimyasal aktivitesine (dehidrogenaz, DHG; proteaz, PRO, üreaz, UA)
ve test bitkisi olarak yetiştirilen mısır bitkisinin (Zea mays var. indentata) verim ve azot içeriğine olan etkileri
faktöriyel bazda incelenmiştir.



Bulgular: Biyolojik gübre uygulamasıyla topraklarda incelenen mikrobiyolojik ve
biyokimyasal parametrelerden MBC, DHG ve AZO parametreleri önemli düzeyde
pozitif olarak etkilenirken (P<0.05); BSR, Nmin ve GB
parametrelerinde de artış saptanmış ancak istatistiksel olarak önemli düzeyde
bulunmamıştır (P>0.05). Buna karşılık hidrolazlar grubundan olan ve
topraklarda N-döngüsünde yer alan iki enzimin aktivitesinde bir azalma
saptanmasına karşın bu azalış da istatistiksel olarak önemli bulunmamıştır
(P>0.05). NO3-N ile AZO arasında ortaya çıkan negatif korelasyon
(-0.468**), azotlu gübrelemede Azospirillum
sp. ile NH4-N’u içeren gübrelerin kullanılmasının daha uygun
olacağını göstermektedir. Biyolojik gübre uygulamalarına bağlı olarak mısır
bitkisinin verimi % 24 – 69 oranında, azot içeriği ise % 3 – 11 oranında artış
göstermiştir. Bu parametreleri en fazla uyaran uygulama ise N1BG1
uygulaması olmuştur.



Sonuç: Deneme
sonuçları değerlendirildiğinde, hem toprak sağlığının sürdürülebilirliğini ve
hem de bitkisel üretimi desteklemek amacıyla 0.5 g ha-1 dozunda
biyolojik gübre ile 125 kg N ha-1 azot dozunun birlikte kullanılması
önerilmektedir.

References

  • Bergstrom, D.W., C.M. Monreal and D.J. King. 1998. Sensitivity of soil enzyme activity to conservation practices. Soil Science Society of America Journal, 62: 1286-1295.
  • Bittman, S., T.A. Forge and C.G. Kowalenko. 2005. Responses of the bacterial and fungal biomass in a grassland soil to multi-year applications of dairy manure slurry and fertilizer. Soil Biology and Biochemistry, 37: 613-623.
  • Black, C.A. 1965. Methods of soil analysis. Part I, American Society of Agronomy, Soil Science Society of America. Madison (WI). p. 1572.
  • Blume, H.P., K. Stahr and P. Leinweber. 2010. Bodenkundliches Praktikum: Eine Einführung in pedologisches Arbeiten für Ökologen, Land-und Forstwirte, Geo-und Umweltwissenschaftler. [Bodenkundliches Praktikum: An Introduction to Pedological Work for Ecologists, Farmers and Foresters, Geo and Environmental Scientists]. 3. Aufl. Springer-Verlag.
  • Bonde, T.A., J. Schnürer and T. Rosswall. 1988. Microbial biomass as a fraction of potentially mineralizable nitrogen in soils from long-term field experiments. Soil Biology and Biochemistry, 20: 447-452.
  • Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analysis of soil. Agronomy Journal, 54: 464-465. doi:10.2134/agronj1962.00021962005400050028x.
  • Bremner, J.M. 1965. Total nitrojen. In: Methods of Soil Analysis - Part 2. (Ed: C.A. Black), Madison (WI): American Society of Agronomy Inc., pp. 1149–1178.
  • Brito, L.F., E. Bach, J. Kalinowski, C. Rückert, D. Wibberg, L.M. Passaglia and V.F. Wendisch. 2015. Complete genome sequence of Paenibacillus riograndensis SBR5T, a Gram-positive diazotrophic rhizobacterium. Journal of Biotechnology, 207: 30-31.
  • Carey, C.J., J.M. Beman, V.T. Eviner, C.M. Malmstrom and S.C. Hart. 2015. Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands. Frontiers in Microbiology, 6: 466.
  • Duxbury, J.M., J.G. Lauren and J.R. Fruci. 1991. Measurement of the biologically active soil nitrogen fraction by a N15 technique. Agriculture, Ecosystems and Environment, 34: 121-129.
  • Fawzi, A.F.A. and M.M. El-Fouly. 1980. Soil and leaf analysis of potassium in different areas in Egypt. In: Role of Potassium in Crop Producton, (Eds: A. Sourat and M.M. El-Fouly), IPI, Bern, pp. 73-80.
  • Fiedler, H.J. 1973. Methoden der bodenanalyse. Band 2: Mikrobiologische Methoden, Verlag: Dresden, Steinkopff, pp. 12-15.
  • Gil-Sotres, F., C. Trasar-Cepeda, M.C. Leiros and S. Seoane. 2005. Different approaches to evaluating soil quality using biochemical properties. Soil Biology and Biochemistry, 37: 877-887.
  • Handa, S.K., M.P. Agnihothri and G. Kulshresta. 2000. Effect of pesticides on soil fertility. In: Pesticide Residue Analysis and Significance, Research Periodicals and Publishing House (Eds: S.K. Handa, M.P. Agnihothri and G. Kulshresta), New Delhi, pp. 184-198.
  • Hassen, A., N. Jedidi, M. Cherif, A. Hiri, A. Boudabous, O. van Cleemput and O. Van-Cleeput. 1998. Mineralization of nitrogen in a clayey loamy soil amended with organic wastes enriched with Zn, Cu and Cd. Bioresource Technology, 64: 39-45.
  • Hayano, K. 1986. Cellulase complex in tomato field soil; introduction localization and some properties. Soil Biology and Biochemistry, 18: 215-219.
  • Isermeyer, H. 1952. Eine einfache Methode zur Bestimmung der Bodenatmung und der Karbonate im Boden. [A simple method for determining soil respiration and carbonates in the soil]. Zeitschrift für Pflanzenernährung und Bodenkunde, 56: 26-38.
  • Jäggi, W. 1976. Die Bestimmung der CO2-Bildung als Maß der bodenbiologischen Aktivität. [The determination of CO2 formation as a measure of soil biological activity]. Schweizer Landwirtschaftliche Forschung, 15: 371-380.
  • Jenkinson, D.S. 1976. The effects of biocidal treatments on metabolism in soil. IV. The decomposition of fumigated organisms in soil. Soil Biology and Biochemistry, 8: 203-208.
  • Jenkinson, D.S. and J.N. Ladd. 1981. Microbial biomass in soil: measurement and turnover. In: Soil Biochemistry (Eds: E.A. Paul and J.N. Ladd), Marcel Dekker, New York, USA, pp. 415-471.
  • Jha, B., M.C. Thakur, I. Gontia, V. Albrecht, M. Stoffels, M. Schmid and A. Hartmann. 2009. Isolation, partial identification and application of diazotrophic rhizobacteria from traditional Indian rice cultivars. European Journal of Soil Biology, 45: 62-72.
  • Ji S.H., M.A. Gururani and S-C. Chun. 2014. Isolation and characterization of plant growth promoting endophyticdiazotrophic bacteria from Korean rice cultivars. Microbiological Research, 169: 83-98.
  • Johnson, L.F., E.A. Curl, J.H. Bond and H.A. Fribourg. 1959. Methods For Studying Soil Microflora - Plant Disease Relationships. Minneapolis: Burgess Publishing Company, pp. 87-89.
  • Kalembasa, S.J. and D.S. Jenkinson. 1973. A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil. Journal of the Science of Food and Agriculture, 24: 1085-1090.
  • Kandeler, E. and H. Gerber. 1988. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils, 6: 68-72.
  • Karakuyu, M. ve A. Özçağlar. 2005. Alaşehir ilçesinin tarımsal yapısı ve planlamasına dair öneriler. Coğrafi Bilimler Dergisi, 3: 1-17.
  • Kellog, C.E. 1952. Our Garden Soils. The Macmillan Company, New York.
  • Knudsen, D., G.A. Peterson and P.F. Pratt. 1982. Lithium, sodium and potassium. In: Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties (Eds: A.L. Page, R.H. Miller and D.R. Keeney). 2nd ed. Monograph Number 9. Madison (WI): ASA and SSSA, pp. 225-246.
  • Kumar, U., P. Panneerselvam, V. Govindasamy, L. Vithalkumar, M. Senthilkumar, A. Banik and K. Annapurna. 2017. Long-term aromatic rice cultivation effect on frequency and diversityof diazotrophs in its rhizosphere. Ecologial Engineering, 101: 227-236.
  • Ladd, J.N. and J.H.A. Butler. 1972. Short-term assay of soil proteolytic enzyme activities using proteins and dipeptide derivates as substrates. Soil Biology and Biochemistry, 4: 19-39.
  • Li, Y., T. Yang, P. Zhang, A. Zou, X. Peng, L. Wang, R. Yang, J. Qi and Y. Yang. 2012. Differential responses of the diazotrophic community to aluminum-tolerant and aluminum-sensitive soybean genotypes in acidic soil. European Journal of Soil Biology, 53: 76-85.
  • Lindsay, W.L. and W.A. Norvell. 1978. Development of a DTPA Soil Test For Zn, Fe, Mn and Cu. Soil Science Society of America Journal, 42: 421-428.
  • Loue, A. 1968. Diagnostic pétiolaire de prospection. Etudes sur la nutrition et la fertilisation potassiques de la Vigne. Societe Commerciale des Potasses d'Alsace. Services Agronomiques, 31-41.
  • Lupwayi, N.Z., G.P. Lafond, N. Ziadi and C.A. Grant. 2012. Soil microbial response to nitrogen fertilizer and tillage in barley and corn. Soil & Tillage Research, 118: 139-146.
  • Mahdi, S.S., G.I. Hassan, S.A. Samoon, H.A. Rather, A.D. Showkart and B. Zehra. 2010. Bio-fertilizers in organic agriculture. Journal of Phytology, 2: 42-54.
  • Majumder, B., B. Mandal, P.K. Bandyopadhyay, J. Chaudhuri. 2007. Soil organic carbon pools and productivity relationships for a 34 year old rice–wheat–jute agroecosystem under different fertilizer treatments. Plant and Soil, 297: 53-67.
  • Malý, S., J. Královec and D. Hampel. 2009. Effects of long-term mineral fertilization on microbial biomass, microbial activity, and the presence of r- and K-strategists in soil. Biology and Fertility of Soils, 45: 753-760.
  • Midmore, D.J. 1993. Agronomic modification of resource use and intercrop productivity. Field Crops Research, 34: 357-380.
  • Moreno, J.L., C. Garcia and T. Hernandez. 2003. Toxic effect of cadmium and nickel on soil enzymes and the influence of adding sewage sludge. European Journal of Soil Science, 54: 377-386.
  • Nelson, D.W. and L.E. Sommers. 1982. Total carbon, organic carbon and organic matter. In: Methods of Soil Analysis, part 2: Chemical and Microbiological Properties (Eds: A.L. Page, R.H. Miller and D.R. Keeney). 2nd ed. Monograph Number 9. Madison (WI): ASA and SSSA, pp. 539-580.
  • Nelson, R.E. 1982. Carbonate and gypsum. In: Methods of Soil Analysis, part 2: Chemical and Microbiological Properties (Eds: A.L. Page, R.H. Miller and D.R. Keeney). 2nd ed. Monograph Number 9. Madison (WI): ASA and SSSA, pp. 181-197.
  • Okur, N. ve İ. Ortaş. 2012. Mikrobiyolojik gübreleme ve tarımda mikorizalar. In: Bitki Besleme (Ed: M.R. Karaman), Dumat Ofset, Yenimahalle, Ankara, s. 555-598.
  • Oliveira, A., M.E. Pampulha, M.M. Neto and A.C. Almeida. 2010. Mercury tolerant diazotrophic bacteria in a long-term contaminated soil. Geoderma, 154: 359-363.
  • Olsen, S.R. and L.E. Sommers. 1982 Phosphorous. In: Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties (Eds: A.L. Page, R.H. Miller and D.R. Keeney). 2nd ed. Monograph Number 9. Madison (WI): ASA and SSSA, pp. 403 – 430.
  • Öhlinger, R. 1995. Soil sampling and sample preparation. In: Methods in Soil Biology (Eds: F. Schinner, R. Öhlinger, E. Kandeler and R. Margesin), New York (NY): Springer-Verlag, pp. 7-11.
  • Puri, A., K.P. Padda, C.P. Chanway. 2015. Can a diazotrophic endophyte originally isolated from lodgepole pine colonize an agricultural crop (corn) and promote its growth? Soil Biology and Biochemistry, 89: 210-216.
  • Rhoades, J.D. 1982. Soluble salts. In: Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties (Eds: A.L. Page, R.H. Miller and D.R. Keeney). 2nd ed. Monograph Number 9. Madison (WI): ASA and SSSA, pp. 167-179.
  • Richards, L.A. 1954. Diagnosis and Improvoment of Saline and Alkaline Soils. U.S.A: U.S. Department of Agriculture, Handbook 60.
  • Rodríguez-Cáceres, E.A. 1982. Improved medium for isolation of Azospirillum sp. Applied and Environmental Microbiology, 44: 990-991.
  • Ross, D.J. 1987. Soil microbial biomass estimated by the fumigation- incubation procedure: seasonal fluctuations and influence of soil moisture content. Soil Biology and Biochemistry, 19: 397-404.
  • Sarathambal, C., K. Ilamurugu, D. Balachandar, C. Chinnadurai and Y. Gharde. 2015. Characterization and crop production efficiency of diazotrophic isolates from the rhizosphere of semi-arid tropical grasses of India. Applied Soil Ecology, 87: 1-10.
  • Schinner, F., R. Öhlinger, E. Kandeler and R. Margesin. 1995. Methods in Soil Biology. Berlin: Springer- Verlag, pp. 189-191.
  • Shengnan, C., G. Jie, G. Hua and Q. Qingjun. 2011. Effect of microbial fertilizer on microbial activity and microbial community diversity in the rhizosphere of wheat growing on the Loess Plateau. African Journal of Microbiology Research, 5: 137-143.
  • Silveira, A.P.D., V.M.R. Sala, E.J.B.N. Cardoso, E.G. Labanca and M.A.P. Cipriano. 2016. Nitrogen metabolism and growth of wheat plant under diazotrophic endophytic bacteria inoculation. Applied Soil Ecology, 107: 313-319.
  • Singh, A., R.K. Patel and R.P. Singh. 2003. Correlation studies of chemical fertilizers and biofertilizers with growth, yield and nutrient status of olive trees (Olea european). Indian Journal of Hill Farming, 16: 99-100.
  • Skujins, J. 1973. Dehydrogenase: an indicator of biological activities in arid soils. Bulletins from the Ecological Research Committee, 17: 235-241.
  • Stanford, G. and S.J. Smith. 1972. Nitrogen mineralization potentials in soils. Soil Science Society of America Proceedings, 36: 465-472.
  • Tang, Y., M. Zhang, A. Chen, W. Zhang, W. Wei and R. Sheng. 2017. Impact of fertilization regimes on diazotroph community compositions and N2-fixation activity in paddy soil. Agriculture, Ecosystems & Environment, 247: 1-8.
  • Thalmann, A. 1968. Zur Methodik der Bestimmung der Dehydrogenaseaktivität im Boden mittels Triphenyltetrazoliumchlorid (TTC) [Methodology of determination of dehydrogenase activity in soil using triphenyltetrazoliumchloride (TTC)]. Landwirtschaftliche Forschung, 21: 249-258.
  • Tuncay, H. 1994. Sulama Suyu Kalitesi. Ege Üniversitesi Ziraat Fakültesi Yayınları No: 512. Bornova, İzmir.
  • Turan, M., M. Güllüce and F. Şahin. 2013. Biofertilizers is an alternative approach for plant production in Turkey. Soil-Water Journal, 2: 523-530.
  • Ülgen, N. ve N. Yurtsever. 1995. Türkiye Gübre ve Gübreleme Rehberi (4. Baskı). T.C. Başbakanlık Köy Hizmetleri Genel Müdürlüğü Toprak ve Gübre Araştırma Enstitüsü Müdürlüğü Yayınları, Genel Yayın No: 209, Teknik Yayınlar No: T.66, Ankara.
  • Vance, E.D., P.C. Brookes and D.S. Jenkinson. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19: 703-707.
  • Waldrop, M.P. and M.K. Firestone. 2006. Response of microbial community composition and function to soil climate change. Microbial Ecology, 52: 716-724.
  • Wang, J., D. Zhang, L. Zhang, J. Li, W. Raza, Q. Huang and Q. Shen. 2016. Temporal variation of diazotrophic community abundance and structure in surface and subsoil under four fertilization regimes during a wheat growing season. Agriculture, Ecosystems and Environment, 216: 116-124.
  • Wittling, S.C., S. Houot and E. Barriuso. 1995. Soil enzymatic response to addition of municipal solid-waste compost. Biology and Fertility of Soils, 20: 226-236.

The Effect of Biological Fertilizer Containing N-Fixer on Microbiological and Biochemical Soil Characteristics and Maize Yield under Mediterranean Climatic Conditions

Year 2019, Volume: 56 Issue: 4, 505 - 521, 31.12.2019
https://doi.org/10.20289/zfdergi.559383

Abstract

Objective: This study was conducted with the purpose of investigating the effectiveness of potential and the effects on current biological properties in soil with Typical xerofluvent properties under Mediterranean climatic conditions of an imported commercial preparation of organisms (Azospirillum sp., Azorhizobium sp. and Azoarcus sp.) which have the ability to bind free nitrogen from the air (N2) by carrying out asymbiotic nitrogen fixation.

Material and Methods: Three different doses of chemical nitrogen fertilizer (0-125-250 kg N ha-1; N0-N1-N2) were applied to plots with and without biological fertilizer (0-0.5 g ha-1; BG0-BG1), and the effects of these treatments on soil microbiological activity (microbial biomass carbon – MBC, basal soil respiration – BSR, N-mineralization – Nmin, number of general bacteria – GB, number of Azospirillum sp. – AZO) and biochemical activity (dehydrogenase – DHG, protease – PRO, urease – UA), and the yield and nitrogen content of the test plant (Zea mays var. indentata) were investigated on a factorial basis.

Results: Biofertilization had a significant positive effect on the microbiological and biochemical parameters MBC, DHG and AZO (P<0.05) examined in the soil; increases were seen in the parameters BSR, Nmin and GB, but these were found not to be significant (P>0.05). Also, although a reduction was seen in the activity of two enzymes of the hydrolase group which take part in the nitrogen cycle in the soil, this reduction was found not to be significant (P>0.05). However, the negative correlation found between NO3-N and AZO (-0.468**) shows that the use of fertilizers containing Azospirillum sp. and NH4-N would be more suitable. In the maize plants, yield showed an increase of 24-69% with the application of biofertilizer, and nitrogen content increased by 3-11%. The application affecting these parameters the most was the N1BG1 application.

Conclusion: Evaluating the results of the experiment, it is recommended that biological fertilizer at a dose of 0.5 g ha-1 together with nitrogen at a dose of 125 kg N ha-1 should be used on Typic xerofluvent soils in order to both maintain soil health and support crop yield.

References

  • Bergstrom, D.W., C.M. Monreal and D.J. King. 1998. Sensitivity of soil enzyme activity to conservation practices. Soil Science Society of America Journal, 62: 1286-1295.
  • Bittman, S., T.A. Forge and C.G. Kowalenko. 2005. Responses of the bacterial and fungal biomass in a grassland soil to multi-year applications of dairy manure slurry and fertilizer. Soil Biology and Biochemistry, 37: 613-623.
  • Black, C.A. 1965. Methods of soil analysis. Part I, American Society of Agronomy, Soil Science Society of America. Madison (WI). p. 1572.
  • Blume, H.P., K. Stahr and P. Leinweber. 2010. Bodenkundliches Praktikum: Eine Einführung in pedologisches Arbeiten für Ökologen, Land-und Forstwirte, Geo-und Umweltwissenschaftler. [Bodenkundliches Praktikum: An Introduction to Pedological Work for Ecologists, Farmers and Foresters, Geo and Environmental Scientists]. 3. Aufl. Springer-Verlag.
  • Bonde, T.A., J. Schnürer and T. Rosswall. 1988. Microbial biomass as a fraction of potentially mineralizable nitrogen in soils from long-term field experiments. Soil Biology and Biochemistry, 20: 447-452.
  • Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analysis of soil. Agronomy Journal, 54: 464-465. doi:10.2134/agronj1962.00021962005400050028x.
  • Bremner, J.M. 1965. Total nitrojen. In: Methods of Soil Analysis - Part 2. (Ed: C.A. Black), Madison (WI): American Society of Agronomy Inc., pp. 1149–1178.
  • Brito, L.F., E. Bach, J. Kalinowski, C. Rückert, D. Wibberg, L.M. Passaglia and V.F. Wendisch. 2015. Complete genome sequence of Paenibacillus riograndensis SBR5T, a Gram-positive diazotrophic rhizobacterium. Journal of Biotechnology, 207: 30-31.
  • Carey, C.J., J.M. Beman, V.T. Eviner, C.M. Malmstrom and S.C. Hart. 2015. Soil microbial community structure is unaltered by plant invasion, vegetation clipping, and nitrogen fertilization in experimental semi-arid grasslands. Frontiers in Microbiology, 6: 466.
  • Duxbury, J.M., J.G. Lauren and J.R. Fruci. 1991. Measurement of the biologically active soil nitrogen fraction by a N15 technique. Agriculture, Ecosystems and Environment, 34: 121-129.
  • Fawzi, A.F.A. and M.M. El-Fouly. 1980. Soil and leaf analysis of potassium in different areas in Egypt. In: Role of Potassium in Crop Producton, (Eds: A. Sourat and M.M. El-Fouly), IPI, Bern, pp. 73-80.
  • Fiedler, H.J. 1973. Methoden der bodenanalyse. Band 2: Mikrobiologische Methoden, Verlag: Dresden, Steinkopff, pp. 12-15.
  • Gil-Sotres, F., C. Trasar-Cepeda, M.C. Leiros and S. Seoane. 2005. Different approaches to evaluating soil quality using biochemical properties. Soil Biology and Biochemistry, 37: 877-887.
  • Handa, S.K., M.P. Agnihothri and G. Kulshresta. 2000. Effect of pesticides on soil fertility. In: Pesticide Residue Analysis and Significance, Research Periodicals and Publishing House (Eds: S.K. Handa, M.P. Agnihothri and G. Kulshresta), New Delhi, pp. 184-198.
  • Hassen, A., N. Jedidi, M. Cherif, A. Hiri, A. Boudabous, O. van Cleemput and O. Van-Cleeput. 1998. Mineralization of nitrogen in a clayey loamy soil amended with organic wastes enriched with Zn, Cu and Cd. Bioresource Technology, 64: 39-45.
  • Hayano, K. 1986. Cellulase complex in tomato field soil; introduction localization and some properties. Soil Biology and Biochemistry, 18: 215-219.
  • Isermeyer, H. 1952. Eine einfache Methode zur Bestimmung der Bodenatmung und der Karbonate im Boden. [A simple method for determining soil respiration and carbonates in the soil]. Zeitschrift für Pflanzenernährung und Bodenkunde, 56: 26-38.
  • Jäggi, W. 1976. Die Bestimmung der CO2-Bildung als Maß der bodenbiologischen Aktivität. [The determination of CO2 formation as a measure of soil biological activity]. Schweizer Landwirtschaftliche Forschung, 15: 371-380.
  • Jenkinson, D.S. 1976. The effects of biocidal treatments on metabolism in soil. IV. The decomposition of fumigated organisms in soil. Soil Biology and Biochemistry, 8: 203-208.
  • Jenkinson, D.S. and J.N. Ladd. 1981. Microbial biomass in soil: measurement and turnover. In: Soil Biochemistry (Eds: E.A. Paul and J.N. Ladd), Marcel Dekker, New York, USA, pp. 415-471.
  • Jha, B., M.C. Thakur, I. Gontia, V. Albrecht, M. Stoffels, M. Schmid and A. Hartmann. 2009. Isolation, partial identification and application of diazotrophic rhizobacteria from traditional Indian rice cultivars. European Journal of Soil Biology, 45: 62-72.
  • Ji S.H., M.A. Gururani and S-C. Chun. 2014. Isolation and characterization of plant growth promoting endophyticdiazotrophic bacteria from Korean rice cultivars. Microbiological Research, 169: 83-98.
  • Johnson, L.F., E.A. Curl, J.H. Bond and H.A. Fribourg. 1959. Methods For Studying Soil Microflora - Plant Disease Relationships. Minneapolis: Burgess Publishing Company, pp. 87-89.
  • Kalembasa, S.J. and D.S. Jenkinson. 1973. A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil. Journal of the Science of Food and Agriculture, 24: 1085-1090.
  • Kandeler, E. and H. Gerber. 1988. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils, 6: 68-72.
  • Karakuyu, M. ve A. Özçağlar. 2005. Alaşehir ilçesinin tarımsal yapısı ve planlamasına dair öneriler. Coğrafi Bilimler Dergisi, 3: 1-17.
  • Kellog, C.E. 1952. Our Garden Soils. The Macmillan Company, New York.
  • Knudsen, D., G.A. Peterson and P.F. Pratt. 1982. Lithium, sodium and potassium. In: Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties (Eds: A.L. Page, R.H. Miller and D.R. Keeney). 2nd ed. Monograph Number 9. Madison (WI): ASA and SSSA, pp. 225-246.
  • Kumar, U., P. Panneerselvam, V. Govindasamy, L. Vithalkumar, M. Senthilkumar, A. Banik and K. Annapurna. 2017. Long-term aromatic rice cultivation effect on frequency and diversityof diazotrophs in its rhizosphere. Ecologial Engineering, 101: 227-236.
  • Ladd, J.N. and J.H.A. Butler. 1972. Short-term assay of soil proteolytic enzyme activities using proteins and dipeptide derivates as substrates. Soil Biology and Biochemistry, 4: 19-39.
  • Li, Y., T. Yang, P. Zhang, A. Zou, X. Peng, L. Wang, R. Yang, J. Qi and Y. Yang. 2012. Differential responses of the diazotrophic community to aluminum-tolerant and aluminum-sensitive soybean genotypes in acidic soil. European Journal of Soil Biology, 53: 76-85.
  • Lindsay, W.L. and W.A. Norvell. 1978. Development of a DTPA Soil Test For Zn, Fe, Mn and Cu. Soil Science Society of America Journal, 42: 421-428.
  • Loue, A. 1968. Diagnostic pétiolaire de prospection. Etudes sur la nutrition et la fertilisation potassiques de la Vigne. Societe Commerciale des Potasses d'Alsace. Services Agronomiques, 31-41.
  • Lupwayi, N.Z., G.P. Lafond, N. Ziadi and C.A. Grant. 2012. Soil microbial response to nitrogen fertilizer and tillage in barley and corn. Soil & Tillage Research, 118: 139-146.
  • Mahdi, S.S., G.I. Hassan, S.A. Samoon, H.A. Rather, A.D. Showkart and B. Zehra. 2010. Bio-fertilizers in organic agriculture. Journal of Phytology, 2: 42-54.
  • Majumder, B., B. Mandal, P.K. Bandyopadhyay, J. Chaudhuri. 2007. Soil organic carbon pools and productivity relationships for a 34 year old rice–wheat–jute agroecosystem under different fertilizer treatments. Plant and Soil, 297: 53-67.
  • Malý, S., J. Královec and D. Hampel. 2009. Effects of long-term mineral fertilization on microbial biomass, microbial activity, and the presence of r- and K-strategists in soil. Biology and Fertility of Soils, 45: 753-760.
  • Midmore, D.J. 1993. Agronomic modification of resource use and intercrop productivity. Field Crops Research, 34: 357-380.
  • Moreno, J.L., C. Garcia and T. Hernandez. 2003. Toxic effect of cadmium and nickel on soil enzymes and the influence of adding sewage sludge. European Journal of Soil Science, 54: 377-386.
  • Nelson, D.W. and L.E. Sommers. 1982. Total carbon, organic carbon and organic matter. In: Methods of Soil Analysis, part 2: Chemical and Microbiological Properties (Eds: A.L. Page, R.H. Miller and D.R. Keeney). 2nd ed. Monograph Number 9. Madison (WI): ASA and SSSA, pp. 539-580.
  • Nelson, R.E. 1982. Carbonate and gypsum. In: Methods of Soil Analysis, part 2: Chemical and Microbiological Properties (Eds: A.L. Page, R.H. Miller and D.R. Keeney). 2nd ed. Monograph Number 9. Madison (WI): ASA and SSSA, pp. 181-197.
  • Okur, N. ve İ. Ortaş. 2012. Mikrobiyolojik gübreleme ve tarımda mikorizalar. In: Bitki Besleme (Ed: M.R. Karaman), Dumat Ofset, Yenimahalle, Ankara, s. 555-598.
  • Oliveira, A., M.E. Pampulha, M.M. Neto and A.C. Almeida. 2010. Mercury tolerant diazotrophic bacteria in a long-term contaminated soil. Geoderma, 154: 359-363.
  • Olsen, S.R. and L.E. Sommers. 1982 Phosphorous. In: Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties (Eds: A.L. Page, R.H. Miller and D.R. Keeney). 2nd ed. Monograph Number 9. Madison (WI): ASA and SSSA, pp. 403 – 430.
  • Öhlinger, R. 1995. Soil sampling and sample preparation. In: Methods in Soil Biology (Eds: F. Schinner, R. Öhlinger, E. Kandeler and R. Margesin), New York (NY): Springer-Verlag, pp. 7-11.
  • Puri, A., K.P. Padda, C.P. Chanway. 2015. Can a diazotrophic endophyte originally isolated from lodgepole pine colonize an agricultural crop (corn) and promote its growth? Soil Biology and Biochemistry, 89: 210-216.
  • Rhoades, J.D. 1982. Soluble salts. In: Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties (Eds: A.L. Page, R.H. Miller and D.R. Keeney). 2nd ed. Monograph Number 9. Madison (WI): ASA and SSSA, pp. 167-179.
  • Richards, L.A. 1954. Diagnosis and Improvoment of Saline and Alkaline Soils. U.S.A: U.S. Department of Agriculture, Handbook 60.
  • Rodríguez-Cáceres, E.A. 1982. Improved medium for isolation of Azospirillum sp. Applied and Environmental Microbiology, 44: 990-991.
  • Ross, D.J. 1987. Soil microbial biomass estimated by the fumigation- incubation procedure: seasonal fluctuations and influence of soil moisture content. Soil Biology and Biochemistry, 19: 397-404.
  • Sarathambal, C., K. Ilamurugu, D. Balachandar, C. Chinnadurai and Y. Gharde. 2015. Characterization and crop production efficiency of diazotrophic isolates from the rhizosphere of semi-arid tropical grasses of India. Applied Soil Ecology, 87: 1-10.
  • Schinner, F., R. Öhlinger, E. Kandeler and R. Margesin. 1995. Methods in Soil Biology. Berlin: Springer- Verlag, pp. 189-191.
  • Shengnan, C., G. Jie, G. Hua and Q. Qingjun. 2011. Effect of microbial fertilizer on microbial activity and microbial community diversity in the rhizosphere of wheat growing on the Loess Plateau. African Journal of Microbiology Research, 5: 137-143.
  • Silveira, A.P.D., V.M.R. Sala, E.J.B.N. Cardoso, E.G. Labanca and M.A.P. Cipriano. 2016. Nitrogen metabolism and growth of wheat plant under diazotrophic endophytic bacteria inoculation. Applied Soil Ecology, 107: 313-319.
  • Singh, A., R.K. Patel and R.P. Singh. 2003. Correlation studies of chemical fertilizers and biofertilizers with growth, yield and nutrient status of olive trees (Olea european). Indian Journal of Hill Farming, 16: 99-100.
  • Skujins, J. 1973. Dehydrogenase: an indicator of biological activities in arid soils. Bulletins from the Ecological Research Committee, 17: 235-241.
  • Stanford, G. and S.J. Smith. 1972. Nitrogen mineralization potentials in soils. Soil Science Society of America Proceedings, 36: 465-472.
  • Tang, Y., M. Zhang, A. Chen, W. Zhang, W. Wei and R. Sheng. 2017. Impact of fertilization regimes on diazotroph community compositions and N2-fixation activity in paddy soil. Agriculture, Ecosystems & Environment, 247: 1-8.
  • Thalmann, A. 1968. Zur Methodik der Bestimmung der Dehydrogenaseaktivität im Boden mittels Triphenyltetrazoliumchlorid (TTC) [Methodology of determination of dehydrogenase activity in soil using triphenyltetrazoliumchloride (TTC)]. Landwirtschaftliche Forschung, 21: 249-258.
  • Tuncay, H. 1994. Sulama Suyu Kalitesi. Ege Üniversitesi Ziraat Fakültesi Yayınları No: 512. Bornova, İzmir.
  • Turan, M., M. Güllüce and F. Şahin. 2013. Biofertilizers is an alternative approach for plant production in Turkey. Soil-Water Journal, 2: 523-530.
  • Ülgen, N. ve N. Yurtsever. 1995. Türkiye Gübre ve Gübreleme Rehberi (4. Baskı). T.C. Başbakanlık Köy Hizmetleri Genel Müdürlüğü Toprak ve Gübre Araştırma Enstitüsü Müdürlüğü Yayınları, Genel Yayın No: 209, Teknik Yayınlar No: T.66, Ankara.
  • Vance, E.D., P.C. Brookes and D.S. Jenkinson. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry, 19: 703-707.
  • Waldrop, M.P. and M.K. Firestone. 2006. Response of microbial community composition and function to soil climate change. Microbial Ecology, 52: 716-724.
  • Wang, J., D. Zhang, L. Zhang, J. Li, W. Raza, Q. Huang and Q. Shen. 2016. Temporal variation of diazotrophic community abundance and structure in surface and subsoil under four fertilization regimes during a wheat growing season. Agriculture, Ecosystems and Environment, 216: 116-124.
  • Wittling, S.C., S. Houot and E. Barriuso. 1995. Soil enzymatic response to addition of municipal solid-waste compost. Biology and Fertility of Soils, 20: 226-236.
There are 66 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Sevde Ayyıldız This is me 0000-0002-3847-3220

Hüseyin Hüsnü Kayıkçıoğlu 0000-0003-0895-221X

Publication Date December 31, 2019
Submission Date April 30, 2019
Acceptance Date August 5, 2019
Published in Issue Year 2019 Volume: 56 Issue: 4

Cite

APA Ayyıldız, S., & Kayıkçıoğlu, H. H. (2019). N-Fikser İçeren Biyolojik Gübrenin Akdeniz İklimi Koşullarında Mikrobiyolojik ve Biyokimyasal Toprak Özellikleri ile Mısır Verimine Etkisi. Journal of Agriculture Faculty of Ege University, 56(4), 505-521. https://doi.org/10.20289/zfdergi.559383

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.