Research Article
BibTex RIS Cite

Development of the non-grain spawn for edible mushroom (Pleurotus ostreatus): D-optimal mixture design approach

Year 2022, Volume: 59 Issue: 2, 265 - 274, 04.07.2022
https://doi.org/10.20289/zfdergi.1013609

Abstract

Objective: The objective of this study was to develop a non-grain spawn formulation for Pleurotus ostreatus with the D-optimal mixture design approach. The developed spawn was compared with the traditionally used grain spawn in terms of spawn running time and biological efficiency.
Material and Methods: Non-grain spawn was produced in 25 different formulations using wheat bran, poplar sawdust, perlite, CaCO3, CaSO4 components. In addition, oat spawn containing 1% CaSO4 and 0.5% CaCO3 from cereals was used as the control group. Spawn running times and the biological efficiencies of the samples were determined.
Results: The optimum mixing ratios for wheat bran, poplar sawdust, perlite, CaCO3, and CaSO4 used in the formulation of non-grain spawn production were determined as 11.44%, 28.87%, 50.74%, 5.89%, and 3.07%, respectively. The spawn running time of the improved non-grain spawn produced according to the above formulation was shortened by 20.16% as compared to the grain-derived spawn. This shows that the non-grain as one of the two different spawn production methods is technologically superior.
Conclusion: In the leading countries in mushroom production, new technologies and formulations are being developed day by day to shorten the spawn running time and increase biological efficiency and mushroom yield. It is thought that this study will contribute to the development of spawn technology, which is an essential input in mushroom cultivation.

Supporting Institution

KOSGEB, Research & Development, Innovation and Industrial Application Support Program

Project Number

219695

References

  • Akaike, H., 1978. On the likelihood of a time series model. Journal of the Royal Statistical Society: Series D (The Statistician), 27 (3-4): 217-235.
  • Atila, F., 2019. The use of phenolic-rich agricultural wastes for Hericium erinaceus and Lentinula edodes cultivation and its effect on yield performance. Ege Üniversitesi Ziraat Fakültesi Dergisi, 56 (4): 417-425.
  • Azarbad, H., M. Mazaheri Tehrani & H. Rashidi, 2019. Optimization of gluten-free bread formulation using sorghum, rice, and millet flour by D-optimal mixture design approach. Journal of Agricultural Science and Technology, 21 (1): 101-115.
  • Bellettini, M.B., F.A. Fiorda, H.A. Maieves, G.L. Teixeira, S. Ávila, P.S. Hornung, A.M. Júnior & R.H. Ribani, 2019. Factors affecting mushroom Pleurotus spp. Saudi Journal of Biological Sciences, 26 (4): 633-646.
  • Beltran-Garcia, M.J., M. Estarron-Espinosa & T. Ogura, 1997. Volatile compounds secreted by the oyster mushroom (Pleurotus ostreatus) and their antibacterial activities. Journal of Agricultural and Food Chemistry, 45 (10): 4049-4052.
  • Beluhan, S. & A. Ranogajec, 2011. Chemical composition and non-volatile components of Croatian wild edible mushrooms. Food Chemistry, 124 (3): 1076-1082.
  • Bonatti, M., P. Karnopp, H. Soares & S. Furlan, 2004. Evaluation of Pleurotus ostreatus and Pleurotus sajor-caju nutritional characteristics when cultivated in different lignocellulosic wastes. Food Chemistry, 88 (3): 425-428.
  • Colak, M., 2004. Temperature profiles of Agaricus bisporus in composting stages and effects of different composts formulas and casing materials on yield. African Journal of Biotechnology, 3 (9): 456-462.
  • Curvetto, N.R., D. Figlas, R. Devalis & S. Delmastro, 2002. Growth and productivity of different Pleurotus ostreatus strains on sunflower seed hulls supplemented with N–NH4+ and/or Mn (II). Bioresource Technology, 84 (2): 171-176.
  • de Carvalho, C.S.M., C. Sales-Campos & M.C.N. de Andrade, 2010. Mushrooms of the Pleurotus genus: a review of cultivation techniques. Interciencia, 35 (3): 177-182.
  • Doğan, N. & C. Doğan, 2021. İstiridye mantarının (Pleurotus ostreatus) farklı flaş zamanlarına göre antioksidan aktivitesinin ve hiperglisemide anahtar enzim rolü olan α-amilaz ve α-glukozidaz inhibisyon potansiyelinin belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 24 (6): 1177-1186.
  • Dubey, D., B. Dhakal, K. Dhami, P. Sapkota, M. Rana, N. Poudel & L. Aryal, 2019. Comparative study on effect of different substrates on yield performance of oyster mushroom. Global Journal of Biology, Agriculture, Health Sciences, 7.
  • Estrada, A.E.R., M. del Mar Jimenez-Gasco & D.J. Royse, 2009. Improvement of yield of Pleurotus eryngii var. eryngii by substrate supplementation and use of a casing overlay. Bioresource Technology, 100 (21): 5270-5276.
  • Fermor, T., P. Randle & J. Smith, 1985. “Compost as a Substrate and its Preparation, 81-109”. Biology and Technology of the Cultivated Mushroom (Eds. P. B. Flegg, D. M. Spencer & D. A. Wood). John Wiley & Sons, Chichester, New York, USA, 110 pp.
  • Ganash, M., T.M.A. Ghany, M.A. Al Abboud, M.M. Alawlaqi, H. Qanash & B.H. Amin, 2021. Lignocellulolytic activity of Pleurotus ostreatus under solid state fermentation using silage, stover, and cobs of maize. BioResources, 16 (2): 3797-3807.
  • Friedman, J., T. Hastie & R. Tibshirani, 2001. The Elements of Statistical Learning. New York Springer Series İn Statistics Vol. 1, No:10, 764 pp.
  • Hoa, H.T. & C.-L. Wang, 2015. The effects of temperature and nutritional conditions on mycelium growth of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology, 43 (1): 14-23.
  • Homolka, L., L. Lisá, I. Eichlerová & F. Nerud, 2001. Cryopreservation of basidiomycete strains using perlite. Journal of Microbiological Methods, 47 (3): 307-313.
  • Kertesz, M.A. & M. Thai, 2018. Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms. Applied Microbiology and Biotechnology, 102 (4): 1639-1650.
  • Khan, N.A., M. Ajmal, M.I.U. Haq, N. Javed, M.A. Ali, R. Binyamin & S.A. Khan, 2012. Impact of sawdust using various woods for effective cultivation of oyster mushroom. Pakistan Journal of Botany, 44 (1): 399-402.
  • Khan, N.A., W. Ahmed, M.A. Khan, O. Yasin, S. Asad & S. Munir, 2021. Effect of Different Kinds of Substrates on the Growth and Yield Performance of Pleurotus sapidus (Oyster Mushroom). Asian Food Science Journal, 20 (1): 18-24.
  • Khatun, K., H. Mahtab, P. Khanam, M. Sayeed & K. Khan, 2007. Oyster mushroom reduced blood glucose and cholesterol in diabetic subjects. Mymensingh Medical Journal, 16 (1): 94-99.
  • Liu, S.R., W.R. Zhang & Y.B. Kuang, 2018. Production of stalk spawn of an edible mushroom (Pleurotus ostreatus) in liquid culture as a suitable substitute for stick spawn in mushroom cultivation. Scientia Horticulturae, 240 (2018): 572-577.
  • Ma, L., Y.Q. Lin, C. Yang, Z.H. Ying & X.L. Jiang, 2016. Production of liquid spawn of an edible mushroom, Sparassis latifolia by submerged fermentation and mycelial growth on pine wood sawdust. Scientia Horticulturae, 209 (2016): 22-30.
  • Mamiro, D.P. & D.J. Royse, 2008. The influence of spawn type and strain on yield, size and mushroom solids content of Agaricus bisporus produced on non-composted and spent mushroom compost. Bioresource Technology, 99 (8): 3205-3212.
  • Maurya, A.K., V. John, D. Srivastava, S. Simon & H. Pant, 2019. Effect of media and substrates for spawn production of dhingri mushroom (Pleurotus ostreatus). Journal of Natural Resource and Development, 14 (2): 88-92.
  • Myers, R.H., D.C. Montgomery & C.M. Anderson-Cook, 1995. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley & Sons. Inc., New York, NY, 680 pp.
  • Natrella, M., 2010. NIST/SEMATECH, e-Handbook of Statistical Methods. Nist/Sematech, 49 pp.
  • Oseni, T.O., S.S. Dube, P.K. Wahome, M.T. Masarirambi & D. Earnshaw, 2012. Effect of wheat bran supplement on growth and yield of oyster mushroom (Pleurotus ostreatus) on fermented pine sawdust substrate. Experimental Agriculture & Horticulture, 30-40.
  • Pujari, V. & T. Chandra, 2000. Statistical optimization of medium components for enhanced riboflavin production by a UV-mutant of Eremothecium ashbyii. Process Biochemistry, 36 (1-2): 31-37.
  • Ramakrishnan, M., C. Dubey, V. Tulasi, P. Kislai & N. Manohar, 2017. Investigation of lovastatin, the anti-hypercholesterolemia drug molecule from three oyster mushroom species. International Journal of Biomedical and Clinical Sciences, 2 (4): 26-31.
  • Rosado, F.R., C. Kemmelmeier & S.M. Gomes Da Costa, 2002. Alternative method of inoculum and spawn production for the cultivation of the edible Brazilian mushroom Pleurotus ostreatus Sing. Journal of Basic Microbiology: An International Journal on Biochemistry, Physiology, Genetics, Morphology, and Ecology of Microorganisms, 42 (1): 37-44.
  • Sahu, C. & S. Patel, 2020. Optimization of maize–millet based soy fortified composite flour for preparation of RTE extruded products using D-optimal mixture design. Journal of Food Science and Technology, 1-10.
  • Sánchez, C., 2010. Cultivation of Pleurotus ostreatus and other edible mushrooms. Applied Microbiology and Biotechnology, 85 (5): 1321-1337.
  • Sanmee, R., B. Dell, P. Lumyong, K. Izumori & S. Lumyong, 2003. Nutritive value of popular wild edible mushrooms from northern Thailand. Food Chemistry, 82 (4): 527-532.
  • Seo, D.J. & C. Choi, 2021. Antiviral bioactive compounds of mushrooms and their antiviral mechanisms: a review. Viruses, 13 (2): 350.
  • Stamets, P., 2011. Growing Gourmet and Medicinal Mushrooms. Ten speed press, New York, 555 pp.
  • Vetter, J., 2019. Biological values of cultivated mushrooms. A review. Acta Alimentaria, 48 (2): 229-240.
  • Waktola, G. & T. Temesgen, 2020. Pharmacological activities of Oyster mushroom (Pleurotus ostreatus). Novel Research in Microbiology Journal, 4 (2): 688-695.
  • Wang, L., Y. Li, D. Liu, C. Zhang, Y. Qi, Y. Gao, J. Shen & L. Qiu, 2011. Immobilization of mycelial pellets from liquid spawn of oyster mushroom based on carrier adsorption. Horttechnology, 21 (1): 82-86.
  • Yang, X.M., 2000. Cultivation of Edible Mushroom. China Agriculture Press, Beijing, 36 pp.
  • Yang, W., F. Guo & Z. Wan, 2013. Yield and size of oyster mushroom grown on rice/wheat straw basal substrate supplemented with cotton seed hull. Saudi Journal of Biological Sciences, 20 (4): 333-338.
  • Zhang, R.Y., D.D. Hu, X.T. Ma, S.G. Li, J.G. Gu & Q.X. Hu, 2014. Adopting stick spawn reduced the spawn running time and improved mushroom yield and biological efficiency of Pleurotus eryngii. Scientia Horticulturae, 175 (2014): 156-159.
  • Zhang, W.-R., S.-R. Liu, Y.-B. Kuang & S.-Z. Zheng, 2019. Development of a novel spawn (block spawn) of an edible mushroom, Pleurotus ostreatus, in liquid culture and its cultivation evaluation. Mycobiology, 47 (1): 97-104.

Yenilebilir mantar (Pleurotus ostreatus) için tahılsız misel geliştirilmesi: D-optimal karışım tasarımı yaklaşımı

Year 2022, Volume: 59 Issue: 2, 265 - 274, 04.07.2022
https://doi.org/10.20289/zfdergi.1013609

Abstract

Amaç: Bu çalışmada, D-optimal karışım tasarımı yaklaşımı ile Pleurotus ostreatus için tahılsız misel formülasyonu geliştirilmiştir. Geliştirilen misel, misel çalışma süresi ve biyolojik etkinlik açısından geleneksel olarak kullanılan tahıl misel ile karşılaştırılmıştır.
Materyal ve Yöntem: Buğday kepeği, kavak talaşı, perlit, CaCO3, CaSO4 bileşenleri kullanılarak 25 farklı formülasyonda tahılsız misel üretilmiştir. Ayrıca kontrol grubu olarak tahıl kaynaklı %1 CaSO4 and %0.5 CaCO3 içeren yulaf miseli kullanılmıştır. Örneklerin misel çalışma süreleri ve biyolojik verimlilikleri tespit edilmiştir.
Araştırma Bulguları: Tahılsız misel üretiminin formülasyonunda kullanılan buğday kepeği, kavak talaşı, perlit, CaCO3 ve CaSO4 için optimum karışım oranları sırasıyla %11.44, %28.87, %50.74, %5.89 ve %3.07 olarak belirlenmiştir. Yukarıdaki formülasyona göre üretilen geliştirilmiş tahılsız miselin sarım süresi tahıl kaynaklı misele kıyasla %20.16 kısalmıştır. Bu durum iki farklı misel üretim metotundan tahılsız olanının teknolojik açıdan daha üstün olduğunu göstermektedir.
Sonuç: Mantar üretiminde önde gelen ülkelerde misel sarim süresini kısaltmak, biyolojik etkinliği ve mantar verimini artırmak için her geçen gün yeni teknolojiler ve formülasyonlar geliştirilmektedir. Çalışmanın mantar yetiştiriciliğinde önemli bir girdi olan misel teknolojisinin geliştirilmesine katkı sağlayacağı düşünülmektedir

Project Number

219695

References

  • Akaike, H., 1978. On the likelihood of a time series model. Journal of the Royal Statistical Society: Series D (The Statistician), 27 (3-4): 217-235.
  • Atila, F., 2019. The use of phenolic-rich agricultural wastes for Hericium erinaceus and Lentinula edodes cultivation and its effect on yield performance. Ege Üniversitesi Ziraat Fakültesi Dergisi, 56 (4): 417-425.
  • Azarbad, H., M. Mazaheri Tehrani & H. Rashidi, 2019. Optimization of gluten-free bread formulation using sorghum, rice, and millet flour by D-optimal mixture design approach. Journal of Agricultural Science and Technology, 21 (1): 101-115.
  • Bellettini, M.B., F.A. Fiorda, H.A. Maieves, G.L. Teixeira, S. Ávila, P.S. Hornung, A.M. Júnior & R.H. Ribani, 2019. Factors affecting mushroom Pleurotus spp. Saudi Journal of Biological Sciences, 26 (4): 633-646.
  • Beltran-Garcia, M.J., M. Estarron-Espinosa & T. Ogura, 1997. Volatile compounds secreted by the oyster mushroom (Pleurotus ostreatus) and their antibacterial activities. Journal of Agricultural and Food Chemistry, 45 (10): 4049-4052.
  • Beluhan, S. & A. Ranogajec, 2011. Chemical composition and non-volatile components of Croatian wild edible mushrooms. Food Chemistry, 124 (3): 1076-1082.
  • Bonatti, M., P. Karnopp, H. Soares & S. Furlan, 2004. Evaluation of Pleurotus ostreatus and Pleurotus sajor-caju nutritional characteristics when cultivated in different lignocellulosic wastes. Food Chemistry, 88 (3): 425-428.
  • Colak, M., 2004. Temperature profiles of Agaricus bisporus in composting stages and effects of different composts formulas and casing materials on yield. African Journal of Biotechnology, 3 (9): 456-462.
  • Curvetto, N.R., D. Figlas, R. Devalis & S. Delmastro, 2002. Growth and productivity of different Pleurotus ostreatus strains on sunflower seed hulls supplemented with N–NH4+ and/or Mn (II). Bioresource Technology, 84 (2): 171-176.
  • de Carvalho, C.S.M., C. Sales-Campos & M.C.N. de Andrade, 2010. Mushrooms of the Pleurotus genus: a review of cultivation techniques. Interciencia, 35 (3): 177-182.
  • Doğan, N. & C. Doğan, 2021. İstiridye mantarının (Pleurotus ostreatus) farklı flaş zamanlarına göre antioksidan aktivitesinin ve hiperglisemide anahtar enzim rolü olan α-amilaz ve α-glukozidaz inhibisyon potansiyelinin belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 24 (6): 1177-1186.
  • Dubey, D., B. Dhakal, K. Dhami, P. Sapkota, M. Rana, N. Poudel & L. Aryal, 2019. Comparative study on effect of different substrates on yield performance of oyster mushroom. Global Journal of Biology, Agriculture, Health Sciences, 7.
  • Estrada, A.E.R., M. del Mar Jimenez-Gasco & D.J. Royse, 2009. Improvement of yield of Pleurotus eryngii var. eryngii by substrate supplementation and use of a casing overlay. Bioresource Technology, 100 (21): 5270-5276.
  • Fermor, T., P. Randle & J. Smith, 1985. “Compost as a Substrate and its Preparation, 81-109”. Biology and Technology of the Cultivated Mushroom (Eds. P. B. Flegg, D. M. Spencer & D. A. Wood). John Wiley & Sons, Chichester, New York, USA, 110 pp.
  • Ganash, M., T.M.A. Ghany, M.A. Al Abboud, M.M. Alawlaqi, H. Qanash & B.H. Amin, 2021. Lignocellulolytic activity of Pleurotus ostreatus under solid state fermentation using silage, stover, and cobs of maize. BioResources, 16 (2): 3797-3807.
  • Friedman, J., T. Hastie & R. Tibshirani, 2001. The Elements of Statistical Learning. New York Springer Series İn Statistics Vol. 1, No:10, 764 pp.
  • Hoa, H.T. & C.-L. Wang, 2015. The effects of temperature and nutritional conditions on mycelium growth of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology, 43 (1): 14-23.
  • Homolka, L., L. Lisá, I. Eichlerová & F. Nerud, 2001. Cryopreservation of basidiomycete strains using perlite. Journal of Microbiological Methods, 47 (3): 307-313.
  • Kertesz, M.A. & M. Thai, 2018. Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms. Applied Microbiology and Biotechnology, 102 (4): 1639-1650.
  • Khan, N.A., M. Ajmal, M.I.U. Haq, N. Javed, M.A. Ali, R. Binyamin & S.A. Khan, 2012. Impact of sawdust using various woods for effective cultivation of oyster mushroom. Pakistan Journal of Botany, 44 (1): 399-402.
  • Khan, N.A., W. Ahmed, M.A. Khan, O. Yasin, S. Asad & S. Munir, 2021. Effect of Different Kinds of Substrates on the Growth and Yield Performance of Pleurotus sapidus (Oyster Mushroom). Asian Food Science Journal, 20 (1): 18-24.
  • Khatun, K., H. Mahtab, P. Khanam, M. Sayeed & K. Khan, 2007. Oyster mushroom reduced blood glucose and cholesterol in diabetic subjects. Mymensingh Medical Journal, 16 (1): 94-99.
  • Liu, S.R., W.R. Zhang & Y.B. Kuang, 2018. Production of stalk spawn of an edible mushroom (Pleurotus ostreatus) in liquid culture as a suitable substitute for stick spawn in mushroom cultivation. Scientia Horticulturae, 240 (2018): 572-577.
  • Ma, L., Y.Q. Lin, C. Yang, Z.H. Ying & X.L. Jiang, 2016. Production of liquid spawn of an edible mushroom, Sparassis latifolia by submerged fermentation and mycelial growth on pine wood sawdust. Scientia Horticulturae, 209 (2016): 22-30.
  • Mamiro, D.P. & D.J. Royse, 2008. The influence of spawn type and strain on yield, size and mushroom solids content of Agaricus bisporus produced on non-composted and spent mushroom compost. Bioresource Technology, 99 (8): 3205-3212.
  • Maurya, A.K., V. John, D. Srivastava, S. Simon & H. Pant, 2019. Effect of media and substrates for spawn production of dhingri mushroom (Pleurotus ostreatus). Journal of Natural Resource and Development, 14 (2): 88-92.
  • Myers, R.H., D.C. Montgomery & C.M. Anderson-Cook, 1995. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley & Sons. Inc., New York, NY, 680 pp.
  • Natrella, M., 2010. NIST/SEMATECH, e-Handbook of Statistical Methods. Nist/Sematech, 49 pp.
  • Oseni, T.O., S.S. Dube, P.K. Wahome, M.T. Masarirambi & D. Earnshaw, 2012. Effect of wheat bran supplement on growth and yield of oyster mushroom (Pleurotus ostreatus) on fermented pine sawdust substrate. Experimental Agriculture & Horticulture, 30-40.
  • Pujari, V. & T. Chandra, 2000. Statistical optimization of medium components for enhanced riboflavin production by a UV-mutant of Eremothecium ashbyii. Process Biochemistry, 36 (1-2): 31-37.
  • Ramakrishnan, M., C. Dubey, V. Tulasi, P. Kislai & N. Manohar, 2017. Investigation of lovastatin, the anti-hypercholesterolemia drug molecule from three oyster mushroom species. International Journal of Biomedical and Clinical Sciences, 2 (4): 26-31.
  • Rosado, F.R., C. Kemmelmeier & S.M. Gomes Da Costa, 2002. Alternative method of inoculum and spawn production for the cultivation of the edible Brazilian mushroom Pleurotus ostreatus Sing. Journal of Basic Microbiology: An International Journal on Biochemistry, Physiology, Genetics, Morphology, and Ecology of Microorganisms, 42 (1): 37-44.
  • Sahu, C. & S. Patel, 2020. Optimization of maize–millet based soy fortified composite flour for preparation of RTE extruded products using D-optimal mixture design. Journal of Food Science and Technology, 1-10.
  • Sánchez, C., 2010. Cultivation of Pleurotus ostreatus and other edible mushrooms. Applied Microbiology and Biotechnology, 85 (5): 1321-1337.
  • Sanmee, R., B. Dell, P. Lumyong, K. Izumori & S. Lumyong, 2003. Nutritive value of popular wild edible mushrooms from northern Thailand. Food Chemistry, 82 (4): 527-532.
  • Seo, D.J. & C. Choi, 2021. Antiviral bioactive compounds of mushrooms and their antiviral mechanisms: a review. Viruses, 13 (2): 350.
  • Stamets, P., 2011. Growing Gourmet and Medicinal Mushrooms. Ten speed press, New York, 555 pp.
  • Vetter, J., 2019. Biological values of cultivated mushrooms. A review. Acta Alimentaria, 48 (2): 229-240.
  • Waktola, G. & T. Temesgen, 2020. Pharmacological activities of Oyster mushroom (Pleurotus ostreatus). Novel Research in Microbiology Journal, 4 (2): 688-695.
  • Wang, L., Y. Li, D. Liu, C. Zhang, Y. Qi, Y. Gao, J. Shen & L. Qiu, 2011. Immobilization of mycelial pellets from liquid spawn of oyster mushroom based on carrier adsorption. Horttechnology, 21 (1): 82-86.
  • Yang, X.M., 2000. Cultivation of Edible Mushroom. China Agriculture Press, Beijing, 36 pp.
  • Yang, W., F. Guo & Z. Wan, 2013. Yield and size of oyster mushroom grown on rice/wheat straw basal substrate supplemented with cotton seed hull. Saudi Journal of Biological Sciences, 20 (4): 333-338.
  • Zhang, R.Y., D.D. Hu, X.T. Ma, S.G. Li, J.G. Gu & Q.X. Hu, 2014. Adopting stick spawn reduced the spawn running time and improved mushroom yield and biological efficiency of Pleurotus eryngii. Scientia Horticulturae, 175 (2014): 156-159.
  • Zhang, W.-R., S.-R. Liu, Y.-B. Kuang & S.-Z. Zheng, 2019. Development of a novel spawn (block spawn) of an edible mushroom, Pleurotus ostreatus, in liquid culture and its cultivation evaluation. Mycobiology, 47 (1): 97-104.
There are 44 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Articles
Authors

Nurcan Doğan 0000-0001-5414-1819

Cemhan Doğan 0000-0002-9043-0949

Project Number 219695
Early Pub Date July 4, 2022
Publication Date July 4, 2022
Submission Date October 22, 2021
Acceptance Date December 28, 2021
Published in Issue Year 2022 Volume: 59 Issue: 2

Cite

APA Doğan, N., & Doğan, C. (2022). Development of the non-grain spawn for edible mushroom (Pleurotus ostreatus): D-optimal mixture design approach. Journal of Agriculture Faculty of Ege University, 59(2), 265-274. https://doi.org/10.20289/zfdergi.1013609

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.