Research Article
BibTex RIS Cite

Fulljet başlık kullanılarak bazı formüllerle hesaplanan kinetik enerjilerin karşılaştırılması üzerine bir çalışma

Year 2022, Volume: 59 Issue: 3, 397 - 408, 30.09.2022
https://doi.org/10.20289/zfdergi.950402

Abstract

Amaç: Farklı basınçlarda Fulljet tipi başlık (½ HH-50 WSQ) kullanılarak Rose (referans) formülü ile farklı formüllerle hesaplanan kinetik enerjilerin karşılaştırılması amaçlanmıştır.
Materyal ve Yöntem: %9 eğimli 1x1 m boyutunda platform üzerine 17 adet kap (250 cm3) yerleştirilmiştir. Daha sonra bu kaplara 5 dakika sürede yapay yağışlar (30, 40, 50, 60 ve 70 kPa basınçlarda), ½ HH-50 WSQ başlık ile 3 tekrarlı olarak uygulanmıştır. Damla çapı, yağış şiddetleri, terminal hızlar belirlenmiş ve kinetik enerjiler farklı eşitliklerle hesaplanmıştır.
Araştırma Bulguları: Bu çalışmada yağış şiddetleri, 85-109 mm h-1, Christiansen katsayıları (CU) (%) %83-87, damla çapları (D50) 1.77-2.05 mm ve terminal hızlar 6.08-6.67 m s-1 belirlenmiştir. Ortalama kinetik enerjiler de sırasıyla 9.94-46.59 J m-2 mm-1 arasında hesaplanmıştır.
Sonuç: Bu çalışmada, Rose (1960) formülü ile bazı kinetik enerji formülleri arasında çok yakın (%±5) ilişkiler bulunmuştur.

Supporting Institution

Yok

Project Number

Yok

Thanks

Yok

References

  • Anonymous, 2019. Catalog 75C HYD. (Web page: https://www.spraying.com.tr) (Date accessed: April 2021).
  • Bollinne, A., P. Florins, P. Hecq, V. Renard & J.L. Volfs, 1984. Etude de l’energie des pluies en climat tempere oceanique d’Europe Atlantique. Geomorphologie, 27-35.
  • Brandt, C.J., 1990. Simulation of the size distribution and erosivity of raindrops and throughfall drops. Earth Surfaces Processes, 15: 687-698. https://doi.org/10.1002/esp.3290150803.
  • Bubenzer, G. D. & L. D. Meyer, 1965. Simulation of rainfall and soils for laboratory research. Transaction of American Society of Agricultural Engineers, 8: 73-75.
  • Carter, C.E., J.D. Greer, H.J. Braud & J.M. Floyd, 1974. Raindrop characteristics in south central United States. Transaction of American Society of Agricultural Engineers, 1033-1037. doi: 10.13031/2013.37021.
  • Cerro, C., J. Bech, B. Codina & J. Lorente, 1998. Modelling rain erosivity using disdrometric techniques. Soil Science of Society of American Journal, 62: 731-735. https://doi.org/10.2136/sssaj1998.03615995006200030027x.
  • Chouksey, A., V. Lambey, B. R. Nikam, S. P. Aggarvald & S. Dutta, 2017. Hydrolgical modelling using a rainfall simulator over an experimental hillslope plot. Hydrology, 4: 17. https://doi.org/10.3390/hydrology4010017.
  • Christiansen, J. E., 1942. Irrigation by sprinkling. University of California Agricultural Experiment Station Bulletin No: 670.
  • Coutinho, M. A. & P. P Tomas, 1995. Characterisation of raindrop size distributions at the Vale Formoso Experimental Erosion Center. Catena, 25: 187-197. https://doi.org/10.1016/0341-8162(95)00009-H.
  • Houndonougbo, M. & G. Yönter, 2020. Farklı basınçlarda veejet ve fulljet başlıkların yağış şiddeti, Christiansen katsayısı, yüzey akış ve toprak kayıpları üzerine etkilerinin kıyaslanması üzerine bir ön çalışma. Ege Üniversitesi. Ziraat Fakültesi Dergisi, 57 (2): 209-217. https://doi.org/10.20289/zfdergi.553142.
  • Hudson, N. W., 1965. The influence of rainfall mechanics on soil erosion. MSc Thesis, Cape Town.
  • Humphry, J. B., T. C. Daniel, D. R. Edwards & A. N. Sharpley, 2002. A portable rainfall simulator for plot-scale runoff studies. Applied Engineering in Agriculture 18 (2): 199-204.
  • Jayawerdana, A. W. & R. B. Rezaur, 2000. Drop size distribution and kinetic energy load of rainstorms in Hong Kong. Hydrological Processes. 14: 1069-1082. DOI:10.1002/(SICI)1099-1085(20000430)14:63.0.CO;2-Q.
  • Kinnell, P. I. A., 1981. Rainfall intensity-kinetic energy relationship for soil loss prediction. Soil Science Society of America Proceedings, 45: 153-155. https://doi.org/10.2136/sssaj1981.03615995004500010033x.
  • Kohnke, H. & A.R. Bertrand, 1959. Soil Conservation, McGraw Hill, NewYork. Kuhn, N. J., R. B. Bryan & J. Novar, 2003. Seal formation and interrill erosion on smectite-rich Kastanozem from NE Mexico. Catena, 52: 149-169.
  • McGregor, K. C. & C. K. Mutchler, 1976. Status of the R factor in northern Mississippi, soil erosion: prediction and control. Soil Conservation Society of American, 135-142.
  • McIsaac, G. F., 1990. Apparent geographic and atmospheric influences on rain drop sizes and rainfall kinetic energy. Journal of Soil Water Conservation, 45: 663-666.
  • Meyer, L. D., 1965. Simulation of rainfall for soil erosion research. Transaction of American Society of Agricultural Engineers, 8: 63-65.
  • Navas, A., F. Alberto, J. Machin & A. Galan, 1990. Design and operation of a rainfall simulator for field studies of runoff and soil erosion. Soil Technology, 3: 385-397. https://doi.org/10.1016/0933-3630(90)90019-Y.
  • Omar, M. A., Z. A. Rahaman & W. R. Ismail, 2014. Sediment and nutrient concentration from different land use and land cover of Bukit Merah Reservoir (BMR) Catchment, Perak, Malaysia. Geografı, 2 (2): 52-65. Corpus ID: 182446526.
  • Onaga, K., K. Shirai & A. Yoshinaga, 1988. “Rainfall Erosion and How to Control its Effects on Farmland in Okinawa, 626-639”. In: Land Conservation for Future Generation (Ed. S. Rimwanich). Department of Land Development, Bangkok, 1310 pp.
  • Park, S. W., J. K. Mitchell & G. D. Bubenzer, 1980. An analysis of splash erosion mechanics. American Society of Association 1980 Winter Meeting, Paper No: 80-2502, Chicago, USA.
  • Petan, S., S. Rusjan, A. Vidmar & M. Mikos, 2010. The rainfall kinetic energy-intensity relationship for rainfall erosivity estimation in the Mediterranean part of Slovenia. Journal of Hydrology, 391: 314-321. DOI:10.1016/j.jhydrol.2010.07.031.
  • Renard, K. G., G. R. Foster, G. A. Weesies, D. K. McCool & D. C. Yoder, 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Formula (RUSLE). United States Department of Agriculture, 404 pp.
  • Rose, C.W., 1960. Soil detachment caused by rainfall. Soil Science, 89: 28-35.
  • Rosewell, C. J., 1986. Rainfall kinetic energy in eastern Australia. Journal of Climate and Applied Meteorology, 25: 1695-1701. https://doi.org/10.1175/1520-0450(1986)025<1695:RKEIEA>2.0.CO;2
  • Salles, C., J. Poesen & D. Sempere-Torres, 2002. Kinetic energy of rain and its functional relationship with intensity. Journal of Hydrology, 257: 256-270.
  • Sempere-Torres, D., C. Salles, J.D. Creutin & G. Delrieu, 1992. Quantification of soil detachment by raindrop impact: performance of classical formulae of kinetic energy in Mediterranean storms. Erosion and Sediment Transport Monitoring Programmes in River Basins (Proceedings of the Oslo Symposium, August 1992). IAHS Publ. No. 210, 1992.
  • Smith, J. A. & R. D. De Veaux, 1992. The temporal and spatial variability of rainfall power. Environmetrics, 3 (1): 29-53. https://doi.org/10.1002/env.3170030103.
  • Steiner, M. & J. A. Smith, 2000. Reflectivity, rain rate, and kinetic energy flux relationships based on raindrop spectra. Journal of Applied Meteorology, 39 (11): 1923-1940. https://doi.org/10.1175/1520-0450(2000)039<1923:RRRAKE>2.0.CO;2.
  • Taysun, A., 1985. Doğal ve Yapma Yağışın Karşılaştırılması Yağış Benzeticiler ve Damla Düşme Hızı Tayin Aletleri. T.C. TARIM ORMAN ve KÖYİŞLERİ BAKANLIĞI KÖYHİZMETLERİ GENEL MÜDÜRLÜĞÜ Menemen Bölge TOPRAKSU Araştırma Enstitüsü Müdürlüğü Yayınları, Menemen, İZMİR,119:13.
  • Tossell, R. W., W. T. Dickinson, R. P. Rudra & G. J. Wall, 1987. A portable rainfall simulator. Canadian Agricultural Engineering, 29: 155-162. https://library.csbe-scgab.ca/docs/journal/29/29_2_155_ocr.pdf.
  • Uijlenhoet, R. & J. N. M. Stricker, 1999. Dependence of rainfall interception on drop size. A comment. Journal of Hydrology, 217: 157-163. https://doi.org/10.1016/S0022-1694 (99)00004-9.
  • Uplinger, C. W., 1981. “A new formula for raindrop terminal velocity, 389-391”. In: Abstracts of 20th Conference of Radar Meteorology. American Meteorological Society (November 30- December 3,1981 Boston, USA), 944 pp.
  • Usón, A. & M.C. Ramos, 2001. An improved rainfall erosivity index obtained from experimental interrill soil losses in soils with a Mediterranean climate. Catena, 43: 293-305. https://doi.org/10.1016/S0341-8162(00)00150-8.
  • Wischmeier, W. H. & D. D. Smith, 1958. Rainfall energy and its relationship to soil loss. Transaction American Geophysical Union, 39: 285-291. https://doi.org/10.1029/TR039i002p00285.
  • Zanchi, C. & D. Torri, 1980. “Evaluation of rainfall energy in central Italy, 133-142”. In: Assesment of Erosion (Eds. M. De Boodt & D. Gabriels). Wiley, Toronto, 563 pp.

A study on the comparison of kinetic energies calculated with some formulas using Fulljet nozzle

Year 2022, Volume: 59 Issue: 3, 397 - 408, 30.09.2022
https://doi.org/10.20289/zfdergi.950402

Abstract

Objective: The objective of this study was to compare kinetic energies calculated by different formulas with Rose’s (reference) formula, using Fulljet type nozzle (½ HH-50 WSQ) at different pressures.
Material and Methods: A platform in the dimension of 1x1 m was used to place 17 cups (250 cm3) and inclined at a slope of 9%. Then, artificial rainfalls (at pressures of 30, 40, 50, 60 and 70 kPa) was applied with a ½ HH-50 WSQ nozzle for 5 minutes and each experiment was triplicated. Drop diameter, rainfall intensities, terminal velocities were determined and kinetic energies were calculated with different equations.
Results: In this study, it was found that rain intensities varied between 85- and 109 mm h-1, Christiansen coefficients (CU) (%) were 83-87 %, drop diameter (D50) were 1.77-2.05 mm, and terminal velocities were 6.08-6.67 m s-1. Average kinetic energies were also calculated between 9.94-46.59 J m-2 mm-1, respectively.
Conclusions: The results obtained from this study (±5 %) were found to be in good agreement with the Rose (1960) formula and some kinetic energy formulas.

Project Number

Yok

References

  • Anonymous, 2019. Catalog 75C HYD. (Web page: https://www.spraying.com.tr) (Date accessed: April 2021).
  • Bollinne, A., P. Florins, P. Hecq, V. Renard & J.L. Volfs, 1984. Etude de l’energie des pluies en climat tempere oceanique d’Europe Atlantique. Geomorphologie, 27-35.
  • Brandt, C.J., 1990. Simulation of the size distribution and erosivity of raindrops and throughfall drops. Earth Surfaces Processes, 15: 687-698. https://doi.org/10.1002/esp.3290150803.
  • Bubenzer, G. D. & L. D. Meyer, 1965. Simulation of rainfall and soils for laboratory research. Transaction of American Society of Agricultural Engineers, 8: 73-75.
  • Carter, C.E., J.D. Greer, H.J. Braud & J.M. Floyd, 1974. Raindrop characteristics in south central United States. Transaction of American Society of Agricultural Engineers, 1033-1037. doi: 10.13031/2013.37021.
  • Cerro, C., J. Bech, B. Codina & J. Lorente, 1998. Modelling rain erosivity using disdrometric techniques. Soil Science of Society of American Journal, 62: 731-735. https://doi.org/10.2136/sssaj1998.03615995006200030027x.
  • Chouksey, A., V. Lambey, B. R. Nikam, S. P. Aggarvald & S. Dutta, 2017. Hydrolgical modelling using a rainfall simulator over an experimental hillslope plot. Hydrology, 4: 17. https://doi.org/10.3390/hydrology4010017.
  • Christiansen, J. E., 1942. Irrigation by sprinkling. University of California Agricultural Experiment Station Bulletin No: 670.
  • Coutinho, M. A. & P. P Tomas, 1995. Characterisation of raindrop size distributions at the Vale Formoso Experimental Erosion Center. Catena, 25: 187-197. https://doi.org/10.1016/0341-8162(95)00009-H.
  • Houndonougbo, M. & G. Yönter, 2020. Farklı basınçlarda veejet ve fulljet başlıkların yağış şiddeti, Christiansen katsayısı, yüzey akış ve toprak kayıpları üzerine etkilerinin kıyaslanması üzerine bir ön çalışma. Ege Üniversitesi. Ziraat Fakültesi Dergisi, 57 (2): 209-217. https://doi.org/10.20289/zfdergi.553142.
  • Hudson, N. W., 1965. The influence of rainfall mechanics on soil erosion. MSc Thesis, Cape Town.
  • Humphry, J. B., T. C. Daniel, D. R. Edwards & A. N. Sharpley, 2002. A portable rainfall simulator for plot-scale runoff studies. Applied Engineering in Agriculture 18 (2): 199-204.
  • Jayawerdana, A. W. & R. B. Rezaur, 2000. Drop size distribution and kinetic energy load of rainstorms in Hong Kong. Hydrological Processes. 14: 1069-1082. DOI:10.1002/(SICI)1099-1085(20000430)14:63.0.CO;2-Q.
  • Kinnell, P. I. A., 1981. Rainfall intensity-kinetic energy relationship for soil loss prediction. Soil Science Society of America Proceedings, 45: 153-155. https://doi.org/10.2136/sssaj1981.03615995004500010033x.
  • Kohnke, H. & A.R. Bertrand, 1959. Soil Conservation, McGraw Hill, NewYork. Kuhn, N. J., R. B. Bryan & J. Novar, 2003. Seal formation and interrill erosion on smectite-rich Kastanozem from NE Mexico. Catena, 52: 149-169.
  • McGregor, K. C. & C. K. Mutchler, 1976. Status of the R factor in northern Mississippi, soil erosion: prediction and control. Soil Conservation Society of American, 135-142.
  • McIsaac, G. F., 1990. Apparent geographic and atmospheric influences on rain drop sizes and rainfall kinetic energy. Journal of Soil Water Conservation, 45: 663-666.
  • Meyer, L. D., 1965. Simulation of rainfall for soil erosion research. Transaction of American Society of Agricultural Engineers, 8: 63-65.
  • Navas, A., F. Alberto, J. Machin & A. Galan, 1990. Design and operation of a rainfall simulator for field studies of runoff and soil erosion. Soil Technology, 3: 385-397. https://doi.org/10.1016/0933-3630(90)90019-Y.
  • Omar, M. A., Z. A. Rahaman & W. R. Ismail, 2014. Sediment and nutrient concentration from different land use and land cover of Bukit Merah Reservoir (BMR) Catchment, Perak, Malaysia. Geografı, 2 (2): 52-65. Corpus ID: 182446526.
  • Onaga, K., K. Shirai & A. Yoshinaga, 1988. “Rainfall Erosion and How to Control its Effects on Farmland in Okinawa, 626-639”. In: Land Conservation for Future Generation (Ed. S. Rimwanich). Department of Land Development, Bangkok, 1310 pp.
  • Park, S. W., J. K. Mitchell & G. D. Bubenzer, 1980. An analysis of splash erosion mechanics. American Society of Association 1980 Winter Meeting, Paper No: 80-2502, Chicago, USA.
  • Petan, S., S. Rusjan, A. Vidmar & M. Mikos, 2010. The rainfall kinetic energy-intensity relationship for rainfall erosivity estimation in the Mediterranean part of Slovenia. Journal of Hydrology, 391: 314-321. DOI:10.1016/j.jhydrol.2010.07.031.
  • Renard, K. G., G. R. Foster, G. A. Weesies, D. K. McCool & D. C. Yoder, 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Formula (RUSLE). United States Department of Agriculture, 404 pp.
  • Rose, C.W., 1960. Soil detachment caused by rainfall. Soil Science, 89: 28-35.
  • Rosewell, C. J., 1986. Rainfall kinetic energy in eastern Australia. Journal of Climate and Applied Meteorology, 25: 1695-1701. https://doi.org/10.1175/1520-0450(1986)025<1695:RKEIEA>2.0.CO;2
  • Salles, C., J. Poesen & D. Sempere-Torres, 2002. Kinetic energy of rain and its functional relationship with intensity. Journal of Hydrology, 257: 256-270.
  • Sempere-Torres, D., C. Salles, J.D. Creutin & G. Delrieu, 1992. Quantification of soil detachment by raindrop impact: performance of classical formulae of kinetic energy in Mediterranean storms. Erosion and Sediment Transport Monitoring Programmes in River Basins (Proceedings of the Oslo Symposium, August 1992). IAHS Publ. No. 210, 1992.
  • Smith, J. A. & R. D. De Veaux, 1992. The temporal and spatial variability of rainfall power. Environmetrics, 3 (1): 29-53. https://doi.org/10.1002/env.3170030103.
  • Steiner, M. & J. A. Smith, 2000. Reflectivity, rain rate, and kinetic energy flux relationships based on raindrop spectra. Journal of Applied Meteorology, 39 (11): 1923-1940. https://doi.org/10.1175/1520-0450(2000)039<1923:RRRAKE>2.0.CO;2.
  • Taysun, A., 1985. Doğal ve Yapma Yağışın Karşılaştırılması Yağış Benzeticiler ve Damla Düşme Hızı Tayin Aletleri. T.C. TARIM ORMAN ve KÖYİŞLERİ BAKANLIĞI KÖYHİZMETLERİ GENEL MÜDÜRLÜĞÜ Menemen Bölge TOPRAKSU Araştırma Enstitüsü Müdürlüğü Yayınları, Menemen, İZMİR,119:13.
  • Tossell, R. W., W. T. Dickinson, R. P. Rudra & G. J. Wall, 1987. A portable rainfall simulator. Canadian Agricultural Engineering, 29: 155-162. https://library.csbe-scgab.ca/docs/journal/29/29_2_155_ocr.pdf.
  • Uijlenhoet, R. & J. N. M. Stricker, 1999. Dependence of rainfall interception on drop size. A comment. Journal of Hydrology, 217: 157-163. https://doi.org/10.1016/S0022-1694 (99)00004-9.
  • Uplinger, C. W., 1981. “A new formula for raindrop terminal velocity, 389-391”. In: Abstracts of 20th Conference of Radar Meteorology. American Meteorological Society (November 30- December 3,1981 Boston, USA), 944 pp.
  • Usón, A. & M.C. Ramos, 2001. An improved rainfall erosivity index obtained from experimental interrill soil losses in soils with a Mediterranean climate. Catena, 43: 293-305. https://doi.org/10.1016/S0341-8162(00)00150-8.
  • Wischmeier, W. H. & D. D. Smith, 1958. Rainfall energy and its relationship to soil loss. Transaction American Geophysical Union, 39: 285-291. https://doi.org/10.1029/TR039i002p00285.
  • Zanchi, C. & D. Torri, 1980. “Evaluation of rainfall energy in central Italy, 133-142”. In: Assesment of Erosion (Eds. M. De Boodt & D. Gabriels). Wiley, Toronto, 563 pp.
There are 37 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Articles
Authors

Gokcen Yonter 0000-0003-0823-1893

Houndonougbo Marius Houndonougbo 0000-0003-3293-6885

Project Number Yok
Early Pub Date September 27, 2022
Publication Date September 30, 2022
Submission Date June 10, 2021
Acceptance Date March 5, 2022
Published in Issue Year 2022 Volume: 59 Issue: 3

Cite

APA Yonter, G., & Houndonougbo, H. M. (2022). A study on the comparison of kinetic energies calculated with some formulas using Fulljet nozzle. Ege Üniversitesi Ziraat Fakültesi Dergisi, 59(3), 397-408. https://doi.org/10.20289/zfdergi.950402

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.