Derleme
BibTex RIS Kaynak Göster

Artificial Lighting Principles in Plant Factories

Yıl 2022, Sayı: 376, 97 - 106, 04.01.2023
https://doi.org/10.33724/zm.1197035

Öz

Light is one of the most important factors regulating plant growth and development. Many biological and physiological events of plants, especially photosynthesis, are regulated by light. Artificial lighting elements are used to provide full lighting or supplemental lighting to sunlight in areas where production is intense such as plant factories. In order to express the light needs of plants, it is necessary to know terms such as Photosynthetic Photon Flux Density (PPFD), Photosynthetic Active Radiation (PAR), Daily Light Integral (DLI) and make calculations accordingly.Knowing the intensity, quality, period, uniformity, direction, polarization and compatibility of the light for plant cultivation will enable the creation of the required lighting. Today, only the intensity, quality and period of the light are taken into account among these parameters in lighting fixtures that provide plant growth. Identifying the real needs of the plants and managing the light according to these needs will make it possible to put forward a production system with higher energy efficiency. In this study, it is aimed to give basic information about the properties of light used in vertical farming facilities.

Kaynakça

  • Aguilar, C., Dominguez Pacheco, A., & Cruz-Orea, A. (2015). Thermal Changes of Maize Seed by Laser Irradiation. International Journal of Thermophysics, 36. https://doi.org/10.1007/s10765-015-1882-7
  • Avgoustaki, D. D., & Xydis, G. (2020). Plant factories in the water-food-energy Nexus era: a systematic bibliographical review. Food Security, 12(2), 253-268. https://doi.org/10.1007/s12571-019-01003-z
  • Benedetti, M., Vecchi, V., Barera, S., & Dall’Osto, L. (2018). Biomass from microalgae: the potential of domestication towards sustainable biofactories. Microbial Cell Factories, 17(1), 173. https://doi.org/10.1186/s12934-018-1019-3
  • Çağlayan, N., Mühendislik, A. Ü., Mekatronik, F., Bölümü, M., Üniversitesi, A., Fakültesi, Z., Makineleri Ve Teknolojileri, T., Yazar, S., & Tarihi, G. (2018). Farklı Dalga Boylu LED Işıklarının Yeşil Yapraklı Bitkilerin Gelişimi Üzerindeki Etkileri. Içinde Journal of Agricultural Machinery Science (C. 14, Issue 2).
  • Dayıoğlu, M. A., & Silleli, H. (2012). Seralar için Yapay Aydınlatma Sistemi Tasarımı: Günlük Işık İntegrali Yöntemi. Içinde Tarım Makinaları Bilimi Dergisi (C. 8, Issue 2, ss. 233-240). Tarım Makinaları Derneği.
  • Dou, H., & Niu, G. (2020). Chapter 9 - Plant responses to light. Içinde T. Kozai, G. Niu, & M. Takagaki (Ed.), Plant Factory (Second Edition) (ss. 153-166). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-816691-8.00009-1
  • Folta, K. M. (2004). Green Light Stimulates Early Stem Elongation, Antagonizing Light-Mediated Growth Inhibition. Plant Physiology, 135(3), 1407-1416. https://doi.org/10.1104/pp.104.038893
  • Folta, K. M., & Maruhnich, S. A. (2007). Green light: a signal to slow down or stop. Journal of Experimental Botany, 58(12), 3099-3111. https://doi.org/10.1093/jxb/erm130
  • Fukuda, H., Tanigaki, Y., & Moriyuki, S. (2018). Detection and Utilization of Biological Rhythms in Plant Factories.
  • Goto, E. (2012). Plant Production in a Closed Plant Factory with Artifical Lighting. Acta Horticulturae, 956, 37-49. https://doi.org/10.17660/ActaHortic.2012.956.2
  • Kielich, S. (1970). Optical harmonic generation and laser light frequency mixing processes in nonlinear media. Opto-Electronics, 2(3), 125-151. https://doi.org/10.1007/BF01415090
  • Kim, H.-H., Goins, G. D., Wheeler, R. M., & Sager, J. C. (2004). Green-light Supplementation for Enhanced Lettuce Growth under Red- and Blue-light-emitting Diodes. HortScience HortSci, 39(7), 1617-1622. https://doi.org/10.21273/HORTSCI.39.7.1617
  • Kim, K. Y., Huh, J. H., & Ko, H. J. (2021). Research on crop growing factory: Focusing on lighting and environmental control with technological proposal. Energies, 14(9). https://doi.org/10.3390/en14092624
  • Lin, K. H., Huang, M. Y., Huang, W. D., Hsu, M. H., Yang, Z. W., & Yang, C. M. (2013). The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae, 150, 86-91. https://doi.org/10.1016/J.SCIENTA.2012.10.002
  • Liscum, E., Askinosie, S. K., Leuchtman, D. L., Morrow, J., Willenburg, K. T., & Coats, D. R. (2014). Phototropism: Growing towards an Understanding of Plant Movement. The Plant Cell, 26(1), 38-55. https://doi.org/10.1105/tpc.113.119727
  • McNellis, T. W., & Deng, X.-W. (1995). Light control of seedling morphogenetic pattern. Plant Cell, 7(11), 1749-1761.
  • Runkle, E. (2019). DLI ‘Requirements’. https://gpnmag.com/article/dli-requirements/
  • Seyhan, S., Seyhan, T. G., Silleli, H., & Yılmaz, H. (2022). Bitki fabrikalarında kontrol edilen parametreler ve kontrol yöntemleri. Içinde Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi (C. 13, Issue 2, ss. 153-159). Dicle Üniversitesi. https://doi.org/10.24012/dumf.1058651
  • Shibayev, P. P., & Pergolizzi, R. G. (2010). The Effect of Circularly Polarized Light on the Growth of Plants. International Journal of Botany, 7(1), 113-117. https://doi.org/10.3923/ijb.2011.113.117
  • Tanigaki, Y., & Fukuda, H. (2019). Chapter 2.4 - Control Theory in the Metabolic Rhythms of Plants. Içinde M. Anpo, H. Fukuda, & T. Wada (Ed.), Plant Factory Using Artificial Light (ss. 89-98). Elsevier. https://doi.org/10.1016/B978-0-12-813973-8.00009-9
  • Vanderbilt, V. C., Grant, L., & Daughtry, C. S. T. (1985). Polarization of light scattered by vegetation. Proceedings of the IEEE, 73(6), 1012-1024. https://doi.org/10.1109/PROC.1985.13232
  • Viršilė, A., Olle, M., & Duchovskis, P. (2017). LED Lighting in Horticulture. Içinde S. Dutta Gupta (Ed.), Light Emitting Diodes for Agriculture: Smart Lighting (ss. 113-147). Springer Singapore. https://doi.org/10.1007/978-981-10-5807-3_7
  • Wang, Y., Zhang, H., Zhao, B., & Yuan, X. (2001). Improved growth of artemisia annua L hairy roots and artemisinin production under red light conditions. Biotechnology Letters, 23(23), 1971-1973. https://doi.org/10.1023/A:1013786332363
  • Xu, Y. (2016). Seven dimensions of light in regulating plant growth. Acta Horticulturae, 1134, 445-452. https://doi.org/10.17660/ActaHortic.2016.1134.56
  • Xu, Y. (2019). Chapter 2.1 - Nature and Source of Light for Plant Factory. Içinde M. Anpo, H. Fukuda, & T. Wada (Ed.), Plant Factory Using Artificial Light (ss. 47-69). Elsevier. https://doi.org/10.1016/B978-0-12-813973-8.00002-6
  • Yan, C., Zhou, H., & Li, J. (2016). Safety production based LED light system design for plant factories. 2016 13th China International Forum on Solid State Lighting (SSLChina), 97-100. https://doi.org/10.1109/SSLCHINA.2016.7804360
  • Zeidler, C., Schubert, D., & Vrakking, V. (2017). Vertical Farm 2.0: Designing an Economically Feasible Vertical Farm - A combined European Endeavor for Sustainable Urban Agriculture.
  • Zwinkels, J. (2014). Light, Electromagnetic Spectrum. Içinde R. Luo (Ed.), Encyclopedia of Color Science and Technology (ss. 1-8). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-27851-8_204-1

Dikey Tarım Tesislerinde Yapay Aydınlatma Prensipleri

Yıl 2022, Sayı: 376, 97 - 106, 04.01.2023
https://doi.org/10.33724/zm.1197035

Öz

Işık, bitki büyüme ve gelişmesini düzenleyen en önemli faktörlerden biridir. Bitkiler için başta fotosentez olmak üzere birçok biyolojik ve fizyolojik olay, ışık ile düzenlenmektedir. Dikey tarım tesisleri gibi yoğun üretim yapılan alanlarda aydınlatmayı tümüyle sağlamak ya da doğal aydınlatmayı desteklemek amacıyla yapay aydınlatma elemanlarından yararlanılmaktadır. Bitkilerin ışık ihtiyacını ifade etmek için Fotosentetik Foton Akısı Yoğunluğu (PPFD), Fotosentetik Aktif Radyasyon (PAR), Günlük Işık İntegrali (DLI) gibi terimleri bilmek ve hesaplamaları bunlara göre yapmak gerekmektedir. Bitki yetiştiriciliği için ışığın şiddeti, kalitesi, periyodu, tekdüzeliği, yönü, polarizasyonu ve uyumluluğunun bilinmesi, ihtiyaç duyulan aydınlatmanın oluşturulmasına olanak sağlayacaktır. Günümüzde bitki gelişimini sağlayan aydınlatma armatürlerinde bu parametrelerden yalnızca ışığın şiddeti, kalitesi ve periyodu dikkate alınmaktadır. Bitkilerin gerçek ihtiyaçlarını tespit etmek ve ışığı bu ihtiyaçlara göre yönetmek, daha yüksek enerji verimliliğine sahip bir üretim sistemleri ortaya koymayı mümkün kılacaktır. Bu çalışmada dikey tarım tesislerinde kullanılan ışığın özelliklerine dair temel bilgiler verilmesi amaçlanmıştır.

Kaynakça

  • Aguilar, C., Dominguez Pacheco, A., & Cruz-Orea, A. (2015). Thermal Changes of Maize Seed by Laser Irradiation. International Journal of Thermophysics, 36. https://doi.org/10.1007/s10765-015-1882-7
  • Avgoustaki, D. D., & Xydis, G. (2020). Plant factories in the water-food-energy Nexus era: a systematic bibliographical review. Food Security, 12(2), 253-268. https://doi.org/10.1007/s12571-019-01003-z
  • Benedetti, M., Vecchi, V., Barera, S., & Dall’Osto, L. (2018). Biomass from microalgae: the potential of domestication towards sustainable biofactories. Microbial Cell Factories, 17(1), 173. https://doi.org/10.1186/s12934-018-1019-3
  • Çağlayan, N., Mühendislik, A. Ü., Mekatronik, F., Bölümü, M., Üniversitesi, A., Fakültesi, Z., Makineleri Ve Teknolojileri, T., Yazar, S., & Tarihi, G. (2018). Farklı Dalga Boylu LED Işıklarının Yeşil Yapraklı Bitkilerin Gelişimi Üzerindeki Etkileri. Içinde Journal of Agricultural Machinery Science (C. 14, Issue 2).
  • Dayıoğlu, M. A., & Silleli, H. (2012). Seralar için Yapay Aydınlatma Sistemi Tasarımı: Günlük Işık İntegrali Yöntemi. Içinde Tarım Makinaları Bilimi Dergisi (C. 8, Issue 2, ss. 233-240). Tarım Makinaları Derneği.
  • Dou, H., & Niu, G. (2020). Chapter 9 - Plant responses to light. Içinde T. Kozai, G. Niu, & M. Takagaki (Ed.), Plant Factory (Second Edition) (ss. 153-166). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-816691-8.00009-1
  • Folta, K. M. (2004). Green Light Stimulates Early Stem Elongation, Antagonizing Light-Mediated Growth Inhibition. Plant Physiology, 135(3), 1407-1416. https://doi.org/10.1104/pp.104.038893
  • Folta, K. M., & Maruhnich, S. A. (2007). Green light: a signal to slow down or stop. Journal of Experimental Botany, 58(12), 3099-3111. https://doi.org/10.1093/jxb/erm130
  • Fukuda, H., Tanigaki, Y., & Moriyuki, S. (2018). Detection and Utilization of Biological Rhythms in Plant Factories.
  • Goto, E. (2012). Plant Production in a Closed Plant Factory with Artifical Lighting. Acta Horticulturae, 956, 37-49. https://doi.org/10.17660/ActaHortic.2012.956.2
  • Kielich, S. (1970). Optical harmonic generation and laser light frequency mixing processes in nonlinear media. Opto-Electronics, 2(3), 125-151. https://doi.org/10.1007/BF01415090
  • Kim, H.-H., Goins, G. D., Wheeler, R. M., & Sager, J. C. (2004). Green-light Supplementation for Enhanced Lettuce Growth under Red- and Blue-light-emitting Diodes. HortScience HortSci, 39(7), 1617-1622. https://doi.org/10.21273/HORTSCI.39.7.1617
  • Kim, K. Y., Huh, J. H., & Ko, H. J. (2021). Research on crop growing factory: Focusing on lighting and environmental control with technological proposal. Energies, 14(9). https://doi.org/10.3390/en14092624
  • Lin, K. H., Huang, M. Y., Huang, W. D., Hsu, M. H., Yang, Z. W., & Yang, C. M. (2013). The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae, 150, 86-91. https://doi.org/10.1016/J.SCIENTA.2012.10.002
  • Liscum, E., Askinosie, S. K., Leuchtman, D. L., Morrow, J., Willenburg, K. T., & Coats, D. R. (2014). Phototropism: Growing towards an Understanding of Plant Movement. The Plant Cell, 26(1), 38-55. https://doi.org/10.1105/tpc.113.119727
  • McNellis, T. W., & Deng, X.-W. (1995). Light control of seedling morphogenetic pattern. Plant Cell, 7(11), 1749-1761.
  • Runkle, E. (2019). DLI ‘Requirements’. https://gpnmag.com/article/dli-requirements/
  • Seyhan, S., Seyhan, T. G., Silleli, H., & Yılmaz, H. (2022). Bitki fabrikalarında kontrol edilen parametreler ve kontrol yöntemleri. Içinde Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi (C. 13, Issue 2, ss. 153-159). Dicle Üniversitesi. https://doi.org/10.24012/dumf.1058651
  • Shibayev, P. P., & Pergolizzi, R. G. (2010). The Effect of Circularly Polarized Light on the Growth of Plants. International Journal of Botany, 7(1), 113-117. https://doi.org/10.3923/ijb.2011.113.117
  • Tanigaki, Y., & Fukuda, H. (2019). Chapter 2.4 - Control Theory in the Metabolic Rhythms of Plants. Içinde M. Anpo, H. Fukuda, & T. Wada (Ed.), Plant Factory Using Artificial Light (ss. 89-98). Elsevier. https://doi.org/10.1016/B978-0-12-813973-8.00009-9
  • Vanderbilt, V. C., Grant, L., & Daughtry, C. S. T. (1985). Polarization of light scattered by vegetation. Proceedings of the IEEE, 73(6), 1012-1024. https://doi.org/10.1109/PROC.1985.13232
  • Viršilė, A., Olle, M., & Duchovskis, P. (2017). LED Lighting in Horticulture. Içinde S. Dutta Gupta (Ed.), Light Emitting Diodes for Agriculture: Smart Lighting (ss. 113-147). Springer Singapore. https://doi.org/10.1007/978-981-10-5807-3_7
  • Wang, Y., Zhang, H., Zhao, B., & Yuan, X. (2001). Improved growth of artemisia annua L hairy roots and artemisinin production under red light conditions. Biotechnology Letters, 23(23), 1971-1973. https://doi.org/10.1023/A:1013786332363
  • Xu, Y. (2016). Seven dimensions of light in regulating plant growth. Acta Horticulturae, 1134, 445-452. https://doi.org/10.17660/ActaHortic.2016.1134.56
  • Xu, Y. (2019). Chapter 2.1 - Nature and Source of Light for Plant Factory. Içinde M. Anpo, H. Fukuda, & T. Wada (Ed.), Plant Factory Using Artificial Light (ss. 47-69). Elsevier. https://doi.org/10.1016/B978-0-12-813973-8.00002-6
  • Yan, C., Zhou, H., & Li, J. (2016). Safety production based LED light system design for plant factories. 2016 13th China International Forum on Solid State Lighting (SSLChina), 97-100. https://doi.org/10.1109/SSLCHINA.2016.7804360
  • Zeidler, C., Schubert, D., & Vrakking, V. (2017). Vertical Farm 2.0: Designing an Economically Feasible Vertical Farm - A combined European Endeavor for Sustainable Urban Agriculture.
  • Zwinkels, J. (2014). Light, Electromagnetic Spectrum. Içinde R. Luo (Ed.), Encyclopedia of Color Science and Technology (ss. 1-8). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-27851-8_204-1
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği
Bölüm Derleme Makaleler
Yazarlar

Temuçin Göktürk Seyhan 0000-0003-4622-6059

Sinem Seyhan 0000-0002-2252-7335

Hasan Silleli 0000-0003-2242-3402

Hasan Yılmaz 0000-0001-8577-0327

Erken Görünüm Tarihi 2 Ocak 2023
Yayımlanma Tarihi 4 Ocak 2023
Gönderilme Tarihi 31 Ekim 2022
Kabul Tarihi 26 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Sayı: 376

Kaynak Göster

APA Seyhan, T. G., Seyhan, S., Silleli, H., Yılmaz, H. (2023). Dikey Tarım Tesislerinde Yapay Aydınlatma Prensipleri. Ziraat Mühendisliği(376), 97-106. https://doi.org/10.33724/zm.1197035