Research Article
BibTex RIS Cite

Sonlu Elemanlar Yöntemi ile Akıllı Tarıma Yönelik Küçük İHA’ların İniş Takımlarında Kullanılabilecek Örnek Bir Havasız Tekerleğin Materyal Analizinin Yapılması

Year 2023, Issue: 378, 67 - 77, 30.12.2023
https://doi.org/10.33724/zm.1370034

Abstract

1. ve 2. kategorideki İnsansız Hava Araçları, küçük boyutlu olup, maksimum brüt kalkış ağırlığı 5 - 40 N ve 40 - 250 N arasındadır, normal çalışma irtifası yerden 120 m yüksekliktedir. İnsansız hava araçların için en önemli endişelerden biri, öncelikle malzeme değişiklikleriyle desteklenen hava araçlarının ağırlığıdır. İHA'lara yönelik lastikler uçuş problemlerini azalmak için öncelikle ABS, kauçuk silikon ve naylondan malzemelerden yapılmaktadır. Bu lastikler ölü ağırlığa eklenir ve uçuş sırasında sürüklenir.
Bu sebeple, ABS, kauçuk silikon ve naylon malzemeler gibi çeşitli malzemeler kullanılarak mümkün olan en iyi konfigürasyonu seçmek için titiz bir analiz gerçekleştirilmiştir. İHA tekerleği imalatı, genellikle yüksek mukavemetli hafif ağırlıklı parçaların üretimi olarak bilinir. Ayrıca, daha geniş bir tasarım seçeneği yelpazesi sunar ve yinelemeli bir tasarım yaklaşımını destekler, bu nedenle üretim yöntemi önemlidir. En iyi sonuçları elde etmek için analiz uygulamasında yinelemeli tasarım yaklaşımı kullanılmıştır. Bu çalışma, 40 bölmeli havasız tekerlekler üzerinde yapılmıştır. Tekerlek tasarımları Autodesk Inventor Pro’da modellenmiş ve kategori 1 ve 2 İHA’ların hafif olması nedeniyle iniş sırasında tekerleklerin bükülmesi ve burulması göz ardı edilerek tekerleğin radyal yöndeki statik dayanımı sonlu eleman analizi kullanılarak incelenmiştir.
Sonlu eleman analizine dayanarak Autodesk Inventor Pro ile modellenen havasız tekerlek tasarımı, İHA’nın iniş sırasında 625 N yükte 2.314 mm'lik bir esneme sergilediğini ve şok emiliminde kauçuk silikon malzemenin üstün performans gösterdiğini ortaya koymuştur.

References

  • Anonymous (2023a). Super strength landing gear. Webpage: https://www.dubro.com/products/super-strength-landing-gear, Access date 03.12.2023.
  • Anonymous (2023b). Safety factor calculation. Webpage: https://help.autodesk.com/view/fusion360/ENU/?guid=SIM-SAFETY-FACTOR-CALC-CONCEPT, Access date 03.12.2023.
  • Askarjon, A. S., Qizi, A. M. K. and Makhmujon, M. (2022). Analysis of the Structure and Classification of Airless Tires. Eurasian Journal of Learning and Academic Teaching, 8: 78-81.
  • de Souza, D. A. C., Ribeiro Filho, S. L. M., de Carvalho, A. L. C., Silva, N. S., Barcelos, S. M. and Christoforo, A. L. (2013). Topological Optimization and Genetic Algorithms Used in a Wheel Project for a Drone.
  • Fidan, Ş., & Ulvi, A. (2021). Current Status of Civil Unmanned Aerial Vehicles Law in Turkish Legal Legislation. Turkish Journal of Unmanned Aerial Vehicles, 3(1), 28-35.
  • Iizuka, K., Nakamura, T. and Ishii, Y. (2020). Study on Airless Variable Rigid Wheel to Travel Rigid and Loose Surface for UGV. In RITA 2018: Proceedings of the 6th International Conference on Robot Intelligence Technology and Applications, pp. 185-198, Springer Singapore.
  • Kinoshita, S., Lee, J. H. and Okamoto, S. (2021). Design and Analysis of Lightweight Permanent Magnetic Wheels for Inspection Drone. In 2021 IEEE International Conference on Consumer Electronics (ICCE), pp. 1-6, IEEE.
  • Krüger, W., Besselink, I., Cowling, D., Doan, D. B., Kortüm, W. and Krabacher, W. (1997). Aircraft Landing Gear Dynamics: Simulation and Control. Vehicle System Dynamics, 28(2-3): 119-158.
  • Kumar, R. S., Kumar, K. V., Ramakrishnan, T. (2021). Design Optimization of Airless Tyre-Numerical Approach. In IOP Conference Series: Materials Science and Engineering, 1057 (1): 012032, IOP Publishing.
  • Prabhuram, T., Sundaram, S. M., Jegadeeswer, S. and Kannan, V. S. (2020). Static Analysis of Different Spoke Structure of Airless and Conventional Tyre. In IOP Conference Series: Materials Science and Engineering, 923(1): 012017, IOP Publishing.
  • Quattrocchi, A., Alizzio, D., Capponi, L., Tocci, T., Marsili, R., Rossi, G., ... and Montanini, R. (2022). Measurement of The Structural Behaviour of A 3D Airless Wheel Prototype By Means of Optical Non-Contact Techniques. Acta IMEKO, 11(3): 1-8.
  • Shafabakhsh, G. A. and Kashi, E. (2015). Effect of Aircraft Wheel Load and Configuration on Runway Damages. Periodica Polytechnica Civil Engineering, 59(1): 85-94.
  • Suhag, A. and Dayal, R. (2013). Static Analysis on Custom Polyurethane Spokes of Airless Tire. International Journal of Scientific and Research Publications, 3(11): 2250-315.
  • Türkseven, S., Kizmaz, M. Z., Tekin, A. B., Urkan, E., & Serim, A. T. (2016). Digital Conversion in Agriculture; Unmanned Air Vehicle Use. Journal of Agricultural Machinery Science, 12(4), 267-271.

Material Analysis of a Sample Airless Wheel That Can Be Used in The Landing Gear of Small UAVs for Smart Agriculture Using the Finite Element Method

Year 2023, Issue: 378, 67 - 77, 30.12.2023
https://doi.org/10.33724/zm.1370034

Abstract

Unmanned Aerial Vehicles (UAV) in categories 1 and 2 are small in size and have a maximum gross take-off weight between 5 - 40 N and 40 - 250 N, with a normal operating altitude of 120 m above ground level. One of the major concerns for UAVs is the weight of aerial vehicles, which is aided primarily by material changes. Tires for UAVs are primarily made of ABS, rubber silicone, and nylon to reduce flight problems. These tires add to the dead weight and drag during flight.
In response to these issues, a rigorous analysis was performed to select the best possible configuration using various materials such as Acrylonitrile Butadiene Styrene (ABS), rubber silicone, and nylon materials. UAV wheel manufacturing is commonly known as the production of high-strength light-weighing parts. It also provides a broader range of design options and favors an iterative design approach, so it is important the method of production. To achieve the best results, the iterative design approach was used in the analysis application. The study incorporated a design for airless tires with 40 spokes, leveraging Autodesk Inventor Pro for modeling. Subsequently, the designs underwent Finite Element Analysis to assess static radial strength. Bending and torsion stresses during landing were deemed negligible owing to the lightweight nature of categories 1 and 2 UAVs and were thus excluded from the analysis.
The modeled wheel design in Autodesk Inventor Pro analysis based on Finite Element Analysis of the airless wheels revealed that wheels made of rubber silicone exhibited superior shock absorption, with a deformation of only 2.314 mm at 625 N upon impact during UAV landing maneuvers.

References

  • Anonymous (2023a). Super strength landing gear. Webpage: https://www.dubro.com/products/super-strength-landing-gear, Access date 03.12.2023.
  • Anonymous (2023b). Safety factor calculation. Webpage: https://help.autodesk.com/view/fusion360/ENU/?guid=SIM-SAFETY-FACTOR-CALC-CONCEPT, Access date 03.12.2023.
  • Askarjon, A. S., Qizi, A. M. K. and Makhmujon, M. (2022). Analysis of the Structure and Classification of Airless Tires. Eurasian Journal of Learning and Academic Teaching, 8: 78-81.
  • de Souza, D. A. C., Ribeiro Filho, S. L. M., de Carvalho, A. L. C., Silva, N. S., Barcelos, S. M. and Christoforo, A. L. (2013). Topological Optimization and Genetic Algorithms Used in a Wheel Project for a Drone.
  • Fidan, Ş., & Ulvi, A. (2021). Current Status of Civil Unmanned Aerial Vehicles Law in Turkish Legal Legislation. Turkish Journal of Unmanned Aerial Vehicles, 3(1), 28-35.
  • Iizuka, K., Nakamura, T. and Ishii, Y. (2020). Study on Airless Variable Rigid Wheel to Travel Rigid and Loose Surface for UGV. In RITA 2018: Proceedings of the 6th International Conference on Robot Intelligence Technology and Applications, pp. 185-198, Springer Singapore.
  • Kinoshita, S., Lee, J. H. and Okamoto, S. (2021). Design and Analysis of Lightweight Permanent Magnetic Wheels for Inspection Drone. In 2021 IEEE International Conference on Consumer Electronics (ICCE), pp. 1-6, IEEE.
  • Krüger, W., Besselink, I., Cowling, D., Doan, D. B., Kortüm, W. and Krabacher, W. (1997). Aircraft Landing Gear Dynamics: Simulation and Control. Vehicle System Dynamics, 28(2-3): 119-158.
  • Kumar, R. S., Kumar, K. V., Ramakrishnan, T. (2021). Design Optimization of Airless Tyre-Numerical Approach. In IOP Conference Series: Materials Science and Engineering, 1057 (1): 012032, IOP Publishing.
  • Prabhuram, T., Sundaram, S. M., Jegadeeswer, S. and Kannan, V. S. (2020). Static Analysis of Different Spoke Structure of Airless and Conventional Tyre. In IOP Conference Series: Materials Science and Engineering, 923(1): 012017, IOP Publishing.
  • Quattrocchi, A., Alizzio, D., Capponi, L., Tocci, T., Marsili, R., Rossi, G., ... and Montanini, R. (2022). Measurement of The Structural Behaviour of A 3D Airless Wheel Prototype By Means of Optical Non-Contact Techniques. Acta IMEKO, 11(3): 1-8.
  • Shafabakhsh, G. A. and Kashi, E. (2015). Effect of Aircraft Wheel Load and Configuration on Runway Damages. Periodica Polytechnica Civil Engineering, 59(1): 85-94.
  • Suhag, A. and Dayal, R. (2013). Static Analysis on Custom Polyurethane Spokes of Airless Tire. International Journal of Scientific and Research Publications, 3(11): 2250-315.
  • Türkseven, S., Kizmaz, M. Z., Tekin, A. B., Urkan, E., & Serim, A. T. (2016). Digital Conversion in Agriculture; Unmanned Air Vehicle Use. Journal of Agricultural Machinery Science, 12(4), 267-271.
There are 14 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Araştırma Makaleleri
Authors

Abdullah Beyaz 0000-0002-7329-1318

Early Pub Date December 28, 2023
Publication Date December 30, 2023
Submission Date October 2, 2023
Acceptance Date December 4, 2023
Published in Issue Year 2023 Issue: 378

Cite

APA Beyaz, A. (2023). Material Analysis of a Sample Airless Wheel That Can Be Used in The Landing Gear of Small UAVs for Smart Agriculture Using the Finite Element Method. Ziraat Mühendisliği(378), 67-77. https://doi.org/10.33724/zm.1370034