Determination of Allelic Variation of Karahan-99 × BW3 Bread Wheat Population F4 Individuals Using DNA Markers
Year 2023,
Issue: 378, 58 - 66, 30.12.2023
İlker Yüce
,
Münire Topsakal
,
Ali Tekin
,
İmren Çöken Tekin
,
Ayşe Nur Demirezen
,
Ali Şenay
,
Burakhan Korucu
,
Ali Korkmaz
,
Hüseyin Güngör
,
İlker Aydoğdu
,
Ziya Dumlupınar
Abstract
Wheat is the main nutrient that mankind has used since settled life. Plant breeders are making great efforts to increase the yield of wheat plant in parallel with the increasing world population. In this study, 22 F4 lines obtained as a result of crossing Karahan-99 bread wheat variety with BW3 wheat genotypes were characterized with 11 functional DNA markers belong to some agronomic traits.
Of the 11 markers used in the study, seven worked (Xgwm18, Xwgp118, Xgwm131, Xgwm47, Sun479, Sun209 and UHW89) in Karahan-99 × BW3 Bread Wheat Population. While the highest number of alleles was obtained from the Sun479 marker (18 bands), the lowest band number was obtained from the markers UHW89 and Xgwmn131 (1 band). The mean number of alleles was 6.71, while the mean polymorphism information content (PIC) was 0.99. Xgwm131 marker encoding Yr39 yellow rust allele was interrogated at Karahan-99_M6_72-10/BW3_F4_3 genotype, while Xgwm18 marker amplified Yr26 stripe rust resistant gene at Karahan-99_M6_72-10/BW3_F4_22.
Project Number
2020/4-6 M (YLS)
References
- Aydemir, G., Dumlupinar, Z., Yüce, İ., Baskonuş, T., Sunulu, S. & Gungor, H. (2020). Evaluation of Individuals Obtained from B28×Kunduru-1149 Reciprocal Cross Population by Functional Markers. KSU J. Agric Nat 23(4),1005-1011.
- Bansal, U.K., Muhammad, S., Forrest, K.L., Hayden, M.J. & Bariana, H.S. (2015). Mapping of a new stem rust resistance gene Sr49 in chromosome 5B of wheat. Theoretical and applied genetics, 128(10), 2113-2119.
- Büyükakkaşlar, M., Yüce, İ., Başkonuş, T., Dokuyucu, T., Akkaya, A. & Dumlupınar, Z. (2020). Makarnalık Buğday (Triticum durum Desf.) B27 × Ege 88 Resiprokal Melez Popülasyonunda F4 Kuşağının Allele Özgü Markörlerle Değerlendirilmesi. KSÜ Tarım ve Doğa Derg., 23(6), 1647-1655.
- Dice, L.R. (1945). Measures of the Amount of Ecologic Association Between Species. Ecology, 26, 297-302.
- Distelfeld, A., Uauy, C., Fahima, T. & Dubcovsky, J. (2006). Physical map of the wheat high‐grain protein content gene Gpc‐B1 and development of a high‐throughput molecular marker. New Phytologist, 169(4), 753-763.
- FAO, (2021). Food and Agricultural Organization of the United Nations. Web sitesi: http://www.fao.org/faostat, [Erişim tarihi 26.07.2023].
- Guo, HL., Xuan, JP., Liu, JX., Zhang, YM. & Zheng YQ. (2012). Association of molecular markers with cold tolerance and green period in zoysiagrass (Zoysia Willd.). Breed Sci., 62(4),320-7.
- Güngör, H. (2019). Allelic Variations And Agronomic Comparisons of Durum Wheat Cultivars Under East-Mediterranean Conditions. International Journal of Agriculture And Biology 21(4), 891-898.
- Kiraz, H., Yüce, İ., Kekilli, Ö., Ocaktan, H., Topsakal, M., Gürocak, N.Y., Osanmaz, H., Kılınç, F.M., Başkonuş, T. & Dumlupınar, Z. (2019). Characterization of M3 Mutants of Seri 82 Bread Wheat Cultivar Using Functional Markers. Black Sea Journal of Agriculture, 2(4), 194-202.
- Koçyiğit, B.K., Yüce, İ., Başkonuş, T., Dokuyucu, T., Akkaya, A. & Dumlupinar, Z. (2021). Evaluation of F4 Individuals Belong to Seri 82 × B35 Bread Wheat (Triticum aestivum L.) Cross Population Using Functional DNA Markers. KSU Journal of Agriculture and Nature, 24(3), 586-93.
- Li, Y.C., Fahima, T., Peng, J.H., Roder, M.S., Kirzhner, V.M., Beiles, A., Korol, A.B. & Nevo, E. (2000). Edaphitic Microsatellite DNA Divergence in Wild Emmer Wheat, Triticum dicoccoides, at A Microsite Tabigha. Israel. Theor Appl Genet, 101, 1029–1038.
- Li, X.P., Lan, S.Q., Zhang, Y.L. & Liu, Y.P. (2010). Identification of Molecular Markers Linked To The Genes For Purple Grain Color in Wheat (Triticum aestivum L.). Genetic Resources and Crop Evolution, 57(7), 1007-1012.
- Li, Q., Chen, X.M., Wang, M.N. & Jing, J.X. (2011). Yr45, a new wheat gene for stripe rust resistance on the long arm of chromosome 3D. Theoretical and Applied Genetics, 122(1), 189-197.
- Oliver, R.E., Obert, D.E., Hu, G., Bonman, J.M., O’Leary-Jepsen, E. & Jackson, E.W. (2010). Development of oat-based markers from barley and wheat microsatellites. Genome, 53(6), 458-471.
- Pandey, GC., Mamrutha, HM., Tiwari, R., Sareen, S., Bhatia, S., Siwach, P., Tiwari, & V. Sharma I (2015). Physiological traits associated with heat tolerance in bread wheat (Triticum aestivum L.). Physiol Mol Biol Plants, 21(1), 93-9.
- Yong, R., LI, S. R., WEI, Y. M., Qiang, Z. H. O. U., DU, X. Y., HE, Y. J., & ZHENG, Y. L. (2015). Molecular mapping of a stripe rust resistance gene in Chinese wheat cultivar Mianmai 41. Journal of Integrative Agriculture, 14(2), 295-304.
- Rohlf, F.J. (2005). NTSYS-pc: Numerical Taxonomy and Multivariate Analysis SystemVersion2.2. Setauket, Exeter Publishing, New York, USA.
- Röder, M. S., Plaschke, J., König, S. U., Börner, A., Sorrells, M. E., Tanksley, S. D., & Ganal, M. W. (1995). Abundance, variability and chromosomal location of microsatellites in wheat. Molecular and General Genetics MGG, 246, 327-333.
- Tsonev, S., Christov, N.K., Mihova, G., Dimitrova, A. & Georgieva T. E. (2021). Genetic Diversity and Population Structure of Bread Wheat Varieties Grown in Bulgaria Based on Microsatellite and Phenotypic Analyses. Biotechnology & Biotechnological Equipment, 35(1), 1520-1533.
- TÜİK, (2021). Türkiye İstatistik Kurumu. http://www.tuik.gov.tr [Erişim tarihi 26.07.2023].
- Vanzetti, L.S., Yerkovich, N., Chialvo, E., Lombardo, L., Vaschetto, L. & Helguera, M. (2013). Genetic Structure of Argentinean Hexaploid Wheat Germplasm. Genetics and Molecular Biology, 36, 391-399.
- Yong, R., Li, S.R., Wei, Y.M., Zhou, Q., Du, X.Y., H, Y.J. & Zheng, Y.L. (2015). Molecular Mapping of A Stripe Rust Resistance Gene in Chinese Wheat Cultivar Mianmai 41. Journal of Integrative Agriculture, 14(2), 295-304.
- Yüce, İ. & Dumlupınar, Z. (2023). Evaluation of Agronomic Traits and Allele Specific DNA Markers Related to Some Disease and Quality Traits in Mutant Karakılçık M4 Individuals. KSÜ Tarım ve Doğa Derg., 26 (4), 861-869.
- Weir, B.S. (1996). Genetik Veri Analizi II, 2. baskı. Sinauer Associates Inc, Sunderland, MA.
- Zhou, W., Kolb, F.L. & Domier, L.L. (2005). SSR markers associated with fertility restoration genes against Triticum timopheevii cytoplasm in Triticum aestivum. Euphytica 141, 33–400.
Karahan-99 × BW3 Ekmeklik Buğday Popülasyonu F4 Bireylerinin Allelik Varyasyonunun DNA Markörleri ile Belirlenmesi
Year 2023,
Issue: 378, 58 - 66, 30.12.2023
İlker Yüce
,
Münire Topsakal
,
Ali Tekin
,
İmren Çöken Tekin
,
Ayşe Nur Demirezen
,
Ali Şenay
,
Burakhan Korucu
,
Ali Korkmaz
,
Hüseyin Güngör
,
İlker Aydoğdu
,
Ziya Dumlupınar
Abstract
Buğday insanoğlunun yerleşik hayata geçtiğinden beri en çok kullandığı temel besin maddesidir. Bitki ıslahçıları, artan Dünya nüfusuna paralel olarak buğday bitkisinde de verimi artırmak için çok büyük gayretler ortaya koymaktadırlar. Bu çalışmada Karahan-99 ekmeklik buğday çeşidi ile BW3 buğday genotipinin melezlenmesi sonucu elde edilen 22 F4 hattı bazı özellikler ile ilişkili olduğu bilinen 11 fonksiyonel DNA markörü ile karakterize edilmiştir.
Araştırmada kullanılan 11 markörden 7 tanesi (Xgwm18, Xwgp118, Xgwm131, Xgwm47, Sun479, Sun209 ve UHW89) Karahan-99 × BW3 ekmeklik buğday popülasyonunda polimorfik bant üretmiştir. En fazla allel sayısı Sun479 marköründen (18 adet) elde edilirken, en az bant sayısı da UHW89 ve Xgwm131 (1 adet) markörlerinden elde edilmiştir. Ortalama allel sayısı 6.71 olurken, ortalama polimorfizm bilgi içeriği 0.99 olarak tespit edilmiştir. Xgwm131 markörü Karahan-99_M6_72-10/BW3_F4_10 genotipinde Yr39 sarı pas geni ile ilişkili allele sahip olurken, Xgwm18 markörü Karahan-99_M6_72-10/BW3_F4_22 genotipinde Yr26 sarı pas dayanıklılık geni ile ilişkili beklenen uzunlukta bant vermiştir.
Supporting Institution
KSÜ Bilimsel Araştırma Projeleri Koordinasyon Birimi
Project Number
2020/4-6 M (YLS)
Thanks
Bu çalışma, KSÜ Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiş olup proje numarası 2020/4-6 M (YLS)’dir. Bu projeyi finansal olarak destekleyen KSÜ BAP Birimine teşekkürlerimizi sunarız.
References
- Aydemir, G., Dumlupinar, Z., Yüce, İ., Baskonuş, T., Sunulu, S. & Gungor, H. (2020). Evaluation of Individuals Obtained from B28×Kunduru-1149 Reciprocal Cross Population by Functional Markers. KSU J. Agric Nat 23(4),1005-1011.
- Bansal, U.K., Muhammad, S., Forrest, K.L., Hayden, M.J. & Bariana, H.S. (2015). Mapping of a new stem rust resistance gene Sr49 in chromosome 5B of wheat. Theoretical and applied genetics, 128(10), 2113-2119.
- Büyükakkaşlar, M., Yüce, İ., Başkonuş, T., Dokuyucu, T., Akkaya, A. & Dumlupınar, Z. (2020). Makarnalık Buğday (Triticum durum Desf.) B27 × Ege 88 Resiprokal Melez Popülasyonunda F4 Kuşağının Allele Özgü Markörlerle Değerlendirilmesi. KSÜ Tarım ve Doğa Derg., 23(6), 1647-1655.
- Dice, L.R. (1945). Measures of the Amount of Ecologic Association Between Species. Ecology, 26, 297-302.
- Distelfeld, A., Uauy, C., Fahima, T. & Dubcovsky, J. (2006). Physical map of the wheat high‐grain protein content gene Gpc‐B1 and development of a high‐throughput molecular marker. New Phytologist, 169(4), 753-763.
- FAO, (2021). Food and Agricultural Organization of the United Nations. Web sitesi: http://www.fao.org/faostat, [Erişim tarihi 26.07.2023].
- Guo, HL., Xuan, JP., Liu, JX., Zhang, YM. & Zheng YQ. (2012). Association of molecular markers with cold tolerance and green period in zoysiagrass (Zoysia Willd.). Breed Sci., 62(4),320-7.
- Güngör, H. (2019). Allelic Variations And Agronomic Comparisons of Durum Wheat Cultivars Under East-Mediterranean Conditions. International Journal of Agriculture And Biology 21(4), 891-898.
- Kiraz, H., Yüce, İ., Kekilli, Ö., Ocaktan, H., Topsakal, M., Gürocak, N.Y., Osanmaz, H., Kılınç, F.M., Başkonuş, T. & Dumlupınar, Z. (2019). Characterization of M3 Mutants of Seri 82 Bread Wheat Cultivar Using Functional Markers. Black Sea Journal of Agriculture, 2(4), 194-202.
- Koçyiğit, B.K., Yüce, İ., Başkonuş, T., Dokuyucu, T., Akkaya, A. & Dumlupinar, Z. (2021). Evaluation of F4 Individuals Belong to Seri 82 × B35 Bread Wheat (Triticum aestivum L.) Cross Population Using Functional DNA Markers. KSU Journal of Agriculture and Nature, 24(3), 586-93.
- Li, Y.C., Fahima, T., Peng, J.H., Roder, M.S., Kirzhner, V.M., Beiles, A., Korol, A.B. & Nevo, E. (2000). Edaphitic Microsatellite DNA Divergence in Wild Emmer Wheat, Triticum dicoccoides, at A Microsite Tabigha. Israel. Theor Appl Genet, 101, 1029–1038.
- Li, X.P., Lan, S.Q., Zhang, Y.L. & Liu, Y.P. (2010). Identification of Molecular Markers Linked To The Genes For Purple Grain Color in Wheat (Triticum aestivum L.). Genetic Resources and Crop Evolution, 57(7), 1007-1012.
- Li, Q., Chen, X.M., Wang, M.N. & Jing, J.X. (2011). Yr45, a new wheat gene for stripe rust resistance on the long arm of chromosome 3D. Theoretical and Applied Genetics, 122(1), 189-197.
- Oliver, R.E., Obert, D.E., Hu, G., Bonman, J.M., O’Leary-Jepsen, E. & Jackson, E.W. (2010). Development of oat-based markers from barley and wheat microsatellites. Genome, 53(6), 458-471.
- Pandey, GC., Mamrutha, HM., Tiwari, R., Sareen, S., Bhatia, S., Siwach, P., Tiwari, & V. Sharma I (2015). Physiological traits associated with heat tolerance in bread wheat (Triticum aestivum L.). Physiol Mol Biol Plants, 21(1), 93-9.
- Yong, R., LI, S. R., WEI, Y. M., Qiang, Z. H. O. U., DU, X. Y., HE, Y. J., & ZHENG, Y. L. (2015). Molecular mapping of a stripe rust resistance gene in Chinese wheat cultivar Mianmai 41. Journal of Integrative Agriculture, 14(2), 295-304.
- Rohlf, F.J. (2005). NTSYS-pc: Numerical Taxonomy and Multivariate Analysis SystemVersion2.2. Setauket, Exeter Publishing, New York, USA.
- Röder, M. S., Plaschke, J., König, S. U., Börner, A., Sorrells, M. E., Tanksley, S. D., & Ganal, M. W. (1995). Abundance, variability and chromosomal location of microsatellites in wheat. Molecular and General Genetics MGG, 246, 327-333.
- Tsonev, S., Christov, N.K., Mihova, G., Dimitrova, A. & Georgieva T. E. (2021). Genetic Diversity and Population Structure of Bread Wheat Varieties Grown in Bulgaria Based on Microsatellite and Phenotypic Analyses. Biotechnology & Biotechnological Equipment, 35(1), 1520-1533.
- TÜİK, (2021). Türkiye İstatistik Kurumu. http://www.tuik.gov.tr [Erişim tarihi 26.07.2023].
- Vanzetti, L.S., Yerkovich, N., Chialvo, E., Lombardo, L., Vaschetto, L. & Helguera, M. (2013). Genetic Structure of Argentinean Hexaploid Wheat Germplasm. Genetics and Molecular Biology, 36, 391-399.
- Yong, R., Li, S.R., Wei, Y.M., Zhou, Q., Du, X.Y., H, Y.J. & Zheng, Y.L. (2015). Molecular Mapping of A Stripe Rust Resistance Gene in Chinese Wheat Cultivar Mianmai 41. Journal of Integrative Agriculture, 14(2), 295-304.
- Yüce, İ. & Dumlupınar, Z. (2023). Evaluation of Agronomic Traits and Allele Specific DNA Markers Related to Some Disease and Quality Traits in Mutant Karakılçık M4 Individuals. KSÜ Tarım ve Doğa Derg., 26 (4), 861-869.
- Weir, B.S. (1996). Genetik Veri Analizi II, 2. baskı. Sinauer Associates Inc, Sunderland, MA.
- Zhou, W., Kolb, F.L. & Domier, L.L. (2005). SSR markers associated with fertility restoration genes against Triticum timopheevii cytoplasm in Triticum aestivum. Euphytica 141, 33–400.