Year 2018, Volume 9, Issue 4, Pages 422 - 436 2018-12-28

TIMSS Matematik Değerlendirmeleri Bilgisayar Ortamında Bireyselleştirilmiş Test Olarak Uygulanabilir mi?
Can TIMSS Mathematics Assessments be Implemented as a Computerized Adaptive Test?

Semirhan GOKCE [1] , Cees A.W. GLAS [2]

90 319

Son yıllarda, bilgisayar ortamında bireye uyarlanmış testlerin (BOBUT) özellikle geniş ölçekli test uygulamalarında kullanımı yaygın hale gelmiştir. Testte kullanılan maddelerin ve katılımcıların özelliklerine bağlı olarak en uygun bireye uyarlanmış test algoritmasının belirlenebilmesi amacıyla gerçek ya da türetilmiş veri setlerinin kullanıldığı çok sayıda simülasyon çalışması gerçekleştirilmiş ve çalışmalardan elde edilen bulgular sonucunda birçok test gerçek anlamda bilgisayar ortamında bireye uyarlanmış halleriyle uygulanmaya konulmuştur. Geniş ölçekli test uygulamaları dendiğinde ilk akla gelen uygulamalardan biri olan Uluslararası Matematik ve Fen Eğilimleri Araştırması (TIMSS) 1995 yılından itibaren dördüncü ve sekizinci sınıf düzeylerinde matematik ve fen bilimlerindeki öğrenci başarısını izlemek amacıyla kağıt ve kalem testleri kullanılarak gerçekleştirilmektedir. Bu çalışmanın amacı, TIMSS sekizinci sınıf matematik değerlendirmeleri için en uygun BOBUT algoritmasının belirlenmesini sağlamaktır. TIMSS 2007, 2011 ve 2015 uygulamalarına sekizinci sınıf düzeyinde katılan Türkiye ve ABD’ye ait veri setlerinde yer alan 393 madde, marjinal maksimum olabilirlik tahmin yöntemi kullanılarak aynı ölçek üzerinde kalibre edilmiştir. Madde havuzu oluşturulduktan gerçekleştirilen simülasyonlar ile en iyi test başlangıç kuralının, yetenek kestirim yönteminin, test sonlandırma kuralının ve madde kullanım sıklığı kontrolünün belirlenmesi amaçlanmıştır. Araştırma bulguları beklenen sonsal dağılım yetenek kestirim yönteminin kullanıldığı, test başlangıç kuralı olarak rastgele 6 maddenin uygulandığı, test sonlandırma kuralı olarak 20 maddeden oluşan sabit uzunluktaki testlerin kullanıldığı algoritmanın TIMSS sekizinci sınıf matematik değerlendirmeleri için en uygun yapı olduğunu ortaya koymuştur. Bununla birlikte, madde kullanım sıklığı kontrolünün madde havuzunun etkili kullanımında çok önemli bir yere sahip olduğu belirlenmiştir. Bu çalışmanın hem ulusal hem de uluslararası düzeyde uygulanan geniş ölçekli kağıt ve kalem testlerine alternatif olarak geliştirilebilecek BOBUT uygulamalarındaki en uygun algoritmanın belirlenmesi ve geliştirilmesi süreçlerine katkı sağlayacağı düşünülmektedir.

In recent years, there has been a growing interest and extensive use of computerized adaptive testing (CAT) especially in large-scale assessments. Numerous simulation studies have been conducted on both real and simulated data sets to determine the optimum conditions and develop CAT versions. Being one of the most popular large-scale assessment programs, Trends in International Mathematics and Science Study (TIMSS) has been implemented as paper and pencil tests to monitor student achievement in mathematics and science at fourth and eighth grade levels since 1995. The purpose of this study is to investigate the optimum CAT algorithm for TIMSS eighth grade mathematics assessments. Since Turkey and USA participated in 2007, 2011 and 2015 administrations, their data were combined and then 393 items were calibrated on the same scale by using marginal maximum likelihood estimation method. With this item pool, several scenarios were proposed and tested to determine not only the optimum starting rule, ability estimation method, test termination rule but also the efficiency of exposure control method. The results of the study indicated that estimating abilities with expected a posteriori method after 6 random items, terminating the fixed-length test after 20 items seemed to be the optimum algorithm for TIMSS eighth grade mathematics assessments. Also, it was found that using item exposure control had a prior importance for the effective use of the item pool. This study has some implications for both national and international large-scale test developers in determining the optimum CAT algorithm and its consequences compared with paper and pencil versions.  

  • Davey, T., & Pitoniak, M. J. (2006). Designing computerized adaptive tests. Handbook of Test Development, 543-574. Routledge.
  • Eggen, T. J. H. M. (2004). Contributions to the Theory and Practice of Computerized Adaptive Testing. Dissertation. Print Partners Ipskamp B.V., Enschede.
  • Eggen, T. J. H. M. (2007). Choices in CAT models in the context of educational testing. In D. J. Weiss (Ed.), Proceedings of the 2007 GMAC Conference on Computerized Adaptive Testing.
  • Glas, C. A. W. (2010) MIRT: Multidimensional Item Response Theory. (Computer Software). University of Twente. Retrieved from https://www.utwente.nl/nl/bms/omd/Medewerkers/medewerkers/glas/#soft-ware
  • Glas, C. A. W., & Geerlings, H. (2009). Psychometric aspects of pupil monitoring systems. Studies in Educational Evaluation, 35, 83-88.
  • Gu, L., Reckase M. D. (2007). Designing optimal item pools for computerized adaptive tests with Sympson-Hetter exposure control. In D. J. Weiss (Ed.), Proceedings of the 2007 GMAC Conference on Computerized Adaptive Testing.
  • Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of Item Response Theory (Vol. 2). Sage.
  • Luecht, R. M. & Sireci, S. G. (2012). A review of models for computer-based testing. Research Report RR-2011-12. New York: The College Board.
  • Meijer, R. R. & Nering M. L. (1999). Computerized adaptive testing: overview and introduction. Applied Psychological Measurement, 23, 187-194.
  • Mills, C. N. & Stocking, M. L. (1996). Practical issues in large-scale computerized adaptive testing. Applied Measurement in Education, 9 (4), 287-304.
  • Mullis, I., Martin, V. & Loveless, T. (2016). 20 years of TIMSS, international trends in mathematics and science achievement, curriculum, and instruction. IEA, TIMSS&PIRLS International Study Center Lynch School of Education, Boston College.
  • Sireci, S. G., Baldwin, P., Martone, A., Zenisky, A. L., Kaira, L., Lam, W., & Hambleton, R. K. (2008). Massachusetts Adult Proficiency Tests Technical Manual, Version 2. Center for Educational Assessment Research Report No, 677.
  • van der Linden, W. J. (1995). Advances in computer applications. In T. Oakland & R. K. Hambleton (Eds.), International Perspectives on Academic Assessment, (pp. 105-124). Kluwer Academic Publishers.
  • van der Linden, W. J. (2001). Computerized test construction. Research Report. Twente University, Enschede (Netherlands).
  • van der Linden, W. J. (2010). Item selection and ability estimation in adaptive testing. Elements of Adaptive Testing, 3-30. Springer.
  • Verschoor, A. J., & Straetmans, G. J. J. (2010). MATHCAT: A flexible testing system in mathematics education for adults. In W. J. van der Linden & C. A. W. Glas (Eds.), Elements of Adaptive Testing, (pp. 137-149). Statistics for Social and Behavioral Sciences. Springer.
  • Wainer, H. (2000). Computerized Adaptive Testing: A Primer. Mahvah, NJ: Erlbaum.
  • Zenisky A. L., & Sireci, S. G. (2002) Technological innovations in large-scale assessment, Applied Measurement in Education, 15:4, 337-362.
Primary Language en
Subjects Social
Published Date Kış
Journal Section Articles
Authors

Orcid: 0000-0002-4752-5598
Author: Semirhan GOKCE (Primary Author)
Institution: Niğde Ömer Halisdemir University
Country: Turkey


Orcid: 0000-0001-6531-5503
Author: Cees A.W. GLAS
Institution: University of Twente
Country: The Netherlands


Dates

Publication Date: December 28, 2018

Bibtex @research article { epod487351, journal = {Journal of Measurement and Evaluation in Education and Psychology}, issn = {1309-6575}, eissn = {1309-6575}, address = {Eğitimde ve Psikolojide Ölçme ve Değerlendirme Derneği}, year = {2018}, volume = {9}, pages = {422 - 436}, doi = {10.21031/epod.487351}, title = {Can TIMSS Mathematics Assessments be Implemented as a Computerized Adaptive Test?}, key = {cite}, author = {GOKCE, Semirhan and GLAS, Cees A.W.} }
APA GOKCE, S , GLAS, C . (2018). Can TIMSS Mathematics Assessments be Implemented as a Computerized Adaptive Test?. Journal of Measurement and Evaluation in Education and Psychology, 9 (4), 422-436. DOI: 10.21031/epod.487351
MLA GOKCE, S , GLAS, C . "Can TIMSS Mathematics Assessments be Implemented as a Computerized Adaptive Test?". Journal of Measurement and Evaluation in Education and Psychology 9 (2018): 422-436 <http://dergipark.org.tr/epod/issue/41688/487351>
Chicago GOKCE, S , GLAS, C . "Can TIMSS Mathematics Assessments be Implemented as a Computerized Adaptive Test?". Journal of Measurement and Evaluation in Education and Psychology 9 (2018): 422-436
RIS TY - JOUR T1 - Can TIMSS Mathematics Assessments be Implemented as a Computerized Adaptive Test? AU - Semirhan GOKCE , Cees A.W. GLAS Y1 - 2018 PY - 2018 N1 - doi: 10.21031/epod.487351 DO - 10.21031/epod.487351 T2 - Journal of Measurement and Evaluation in Education and Psychology JF - Journal JO - JOR SP - 422 EP - 436 VL - 9 IS - 4 SN - 1309-6575-1309-6575 M3 - doi: 10.21031/epod.487351 UR - https://doi.org/10.21031/epod.487351 Y2 - 2018 ER -
EndNote %0 Journal of Measurement and Evaluation in Education and Psychology Can TIMSS Mathematics Assessments be Implemented as a Computerized Adaptive Test? %A Semirhan GOKCE , Cees A.W. GLAS %T Can TIMSS Mathematics Assessments be Implemented as a Computerized Adaptive Test? %D 2018 %J Journal of Measurement and Evaluation in Education and Psychology %P 1309-6575-1309-6575 %V 9 %N 4 %R doi: 10.21031/epod.487351 %U 10.21031/epod.487351
ISNAD GOKCE, Semirhan , GLAS, Cees A.W. . "Can TIMSS Mathematics Assessments be Implemented as a Computerized Adaptive Test?". Journal of Measurement and Evaluation in Education and Psychology 9 / 4 (December 2018): 422-436. https://doi.org/10.21031/epod.487351
AMA GOKCE S , GLAS C . Can TIMSS Mathematics Assessments be Implemented as a Computerized Adaptive Test?. Journal of Measurement and Evaluation in Education and Psychology. 2018; 9(4): 422-436.
Vancouver GOKCE S , GLAS C . Can TIMSS Mathematics Assessments be Implemented as a Computerized Adaptive Test?. Journal of Measurement and Evaluation in Education and Psychology. 2018; 9(4): 436-422.