Year 2019, Volume , Issue 5, Pages 43 - 49 2019-06-21

Vulnerability of Soil Slopes Against Seismic Damage Based on the Effect of Spatial Variability of Soil Properties on the Development of Permanent Seismic Displacements

Alamanis NIKOLAOS [1] , Dakoulas PANOS [2]

7 13

The most accurate estimation of seismic slope stability is one of the most important areas of geotechnical seismic engineering. The assumption that soil consists of layers with some average values ​​for soil parameters of each layer is not a realistic representation of actual conditions. The properties of a soil layer are not spatially invariant and the scale of changes can significantly affect the stability analysis of slopes. It is important to include in the analysis as many kinds of uncertainty, especially those resulting from the properties of soil mass and influencing the seismic stability of slopes.Stochastic methods have been introduced in order to calculate the uncertainty and spatial variability of soil parameters. Recent research took into account the spatial variation of parameters using the Random Field Theory. In theory, these variables exhibit autocorrelation, a trend in which the soil properties of a point appear to be correlated with the properties of neighbouring soil points (Vanmarcke, 1977). This study explores the influence of spatial variability of soil properties on the development of permanent displacements during seismic vibration of the slopes as well as the levels of seismic damage that can be caused. This effect is initially investigated for a fixed value of the maximum acceleration of the excitation, and then the results are expanded to include the effect of the seismic intensity level. The results show the curves of vulnerability of slopes against seismic damage and constitute a pretty useful tool for the design of slopes, taking performativity into account. 

Vulnerability, Slopes, Seismic Damage, Spatial variability, Permanent displacements
  • Alamanis, N.O. (2017). Effect of spatial variability of soil properties in permanent seismic displacements of road slopes. University of Thessaly, Department of Civil Engineering, Geotechnical Engineering Sector. p.p. 82-84, 114-119, 123-147, 168-172 Supervisor: P.Dakoulas. Babu, S.G.L. and Mukesh, M.O. (2016). Effect of soil variability on reliability of soil slopes. International Conference on Soil Mechanics and Geotechnical Engineering p.p 147-167 Date: 07 August 2016. Bray, J.D. and Travasarou, Th. (2007). Simplified procedure for estimating earthquake-induced deviatoric slope displacements. J. of Geotechnical and Geoenvironmental Engineering, ASCE, V. 133(4), pp. 381-392. Cho, S.E. (2010). Probabilistic Assessment of slope Stability that considers the spatial variability of soil properties. Journal of geotechnical and geoenviromental engineering p.p. 975-984. Dakoulas P. (2005). Advanced Soil Mechanics (Elasto-plastic Constitutive Models for soils). Notes for the Graduate Course Advanced Soil Mechanics, University of Thessaly, Greece. Fenton, G.A. and Vanmarcke, E.H. (1990). Simulation of Random Fields via Local Average Subdivision. Journal of Engineering Mechanics, Vol.116, No 8 p.p. 1733-1749. Fenton G.A., Griffiths, D.V. and Urquhart, A. (2003). A slope stability model for spatially random soils. In Proc. 9th Int. Conf. Applications of Statistics and Probability in Civil Engineering (ICASP9), A. Kiureghian et al. Eds Millpress, San Fransisco, CA, pp 1263-1269. Fenton, G.A. and Griffiths, D.V. (2008). Risk Assessment in Geotechnical Engineering. John Viley and Sons, Inc. ISBN: 978-0-470-17820-1 p.p. 91-235, 381-392. Griffiths, D.V. and Fenton, G.A. (2004). Probabilistic slope stability analysis by finite elements. NSF Grant No CMS-9877189, p.p. 1-27. Griffiths, D.V. and Fenton, G.A. (2007). Probabilistic methods in geotechnical engineering. CISM courses and lectures No 491, International centre for mechanical sciences, Springer Wien, New York. Ishihara, K. (1985), Stability of Natural Deposits During Earthquakes, Proc. 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, Vol. 1, pp. 321-376. Itasca, (2011). FLAC 7.0 Fast Langrangian Analysis of Continua. Users Guide Minneapolis Itasca Consulting Group. Lin, J.S. and Whitman, R.V. (1986). Earthquake induced displacements of sliding blocks. Journal of Geotechnical Engineering ASCE 112 (1):44-59. Matasovic, N. (1991). Selection of Method for Seismic Slope Stability Analysis. Proceedings of Second International Conference on recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, March 11-15, 1991, St.Luis, Missouri, Paper No 7.20. Newmark N.M. (1965). Effect of earthquakes on dams and embankments, Geotechnique, Vol. 15, No 2, London, England, June, p.p. 139-160. Travassarou, Th. (2006). Probabilistic Methodology for the Calculation of Remaining Seismic Displacements in Slopes. Oakland, U.S.A. 5th Panhellenic Geotechnical Conference, TEE, Xanthi, p.p. 1-8. Vanmarcke, E.H. (1977). Probabilistic modeling of soil profiles. J Geotech Eng. 103(11): p.p.1227-46. Wu, X. Z. (2013). Trivariate analysis of soil ranking correlated characteristics and its application to probabilistic stability assessments in geotechnical engineering problems. Soils and Foundations, Volume 53, Issue 4, August 2013, p.p. 540-556. Yegian, M.K., Marcianno, E.A. and Gharaman, V.G. (1991). Earthquake-Induced Permanent Deformations. Probabilistic Approach. Journal of the Geotechnical Engineering Division, American Society of Civil Engineers, New York, Vol.117, No.1, p.p. 35-50.
Primary Language en
Journal Section Articles
Authors

Author: Alamanis NIKOLAOS

Author: Dakoulas PANOS

Dates

Publication Date: June 21, 2019

Bibtex @research article { epstem581191, journal = {The Eurasia Proceedings of Science Technology Engineering and Mathematics}, issn = {}, eissn = {2602-3199}, address = {ISRES Publishing}, year = {2019}, volume = {}, pages = {43 - 49}, doi = {}, title = {Vulnerability of Soil Slopes Against Seismic Damage Based on the Effect of Spatial Variability of Soil Properties on the Development of Permanent Seismic Displacements}, key = {cite}, author = {NIKOLAOS, Alamanis and PANOS, Dakoulas} }
APA NIKOLAOS, A , PANOS, D . (2019). Vulnerability of Soil Slopes Against Seismic Damage Based on the Effect of Spatial Variability of Soil Properties on the Development of Permanent Seismic Displacements. The Eurasia Proceedings of Science Technology Engineering and Mathematics, (5), 43-49. Retrieved from http://dergipark.org.tr/epstem/issue/46264/581191
MLA NIKOLAOS, A , PANOS, D . "Vulnerability of Soil Slopes Against Seismic Damage Based on the Effect of Spatial Variability of Soil Properties on the Development of Permanent Seismic Displacements". The Eurasia Proceedings of Science Technology Engineering and Mathematics (2019): 43-49 <http://dergipark.org.tr/epstem/issue/46264/581191>
Chicago NIKOLAOS, A , PANOS, D . "Vulnerability of Soil Slopes Against Seismic Damage Based on the Effect of Spatial Variability of Soil Properties on the Development of Permanent Seismic Displacements". The Eurasia Proceedings of Science Technology Engineering and Mathematics (2019): 43-49
RIS TY - JOUR T1 - Vulnerability of Soil Slopes Against Seismic Damage Based on the Effect of Spatial Variability of Soil Properties on the Development of Permanent Seismic Displacements AU - Alamanis NIKOLAOS , Dakoulas PANOS Y1 - 2019 PY - 2019 N1 - DO - T2 - The Eurasia Proceedings of Science Technology Engineering and Mathematics JF - Journal JO - JOR SP - 43 EP - 49 VL - IS - 5 SN - -2602-3199 M3 - UR - Y2 - 2019 ER -
EndNote %0 The Eurasia Proceedings of Science Technology Engineering and Mathematics Vulnerability of Soil Slopes Against Seismic Damage Based on the Effect of Spatial Variability of Soil Properties on the Development of Permanent Seismic Displacements %A Alamanis NIKOLAOS , Dakoulas PANOS %T Vulnerability of Soil Slopes Against Seismic Damage Based on the Effect of Spatial Variability of Soil Properties on the Development of Permanent Seismic Displacements %D 2019 %J The Eurasia Proceedings of Science Technology Engineering and Mathematics %P -2602-3199 %V %N 5 %R %U
ISNAD NIKOLAOS, Alamanis , PANOS, Dakoulas . "Vulnerability of Soil Slopes Against Seismic Damage Based on the Effect of Spatial Variability of Soil Properties on the Development of Permanent Seismic Displacements". The Eurasia Proceedings of Science Technology Engineering and Mathematics / 5 (June 2019): 43-49.
AMA NIKOLAOS A , PANOS D . Vulnerability of Soil Slopes Against Seismic Damage Based on the Effect of Spatial Variability of Soil Properties on the Development of Permanent Seismic Displacements. EPSTEM. 2019; (5): 43-49.
Vancouver NIKOLAOS A , PANOS D . Vulnerability of Soil Slopes Against Seismic Damage Based on the Effect of Spatial Variability of Soil Properties on the Development of Permanent Seismic Displacements. The Eurasia Proceedings of Science Technology Engineering and Mathematics. 2019; (5): 49-43.