Year 2018, Volume 34, Issue 2, Pages 20 - 30 2018-08-31

Cu3Pd Alaşımın Fonon Spektrumu ve Termoelastik Özelliklerinin Moleküler Dinamik Benzetimi

Sefa Kazanç [1]

41 102

Bu çalışmada, Cu3Pd düzenli alaşım sisteminin artan sıcaklık ile akustik fonon frekansları ve doğrusal sıcaklık genleşme katsayısı, hacim modülü, ikinci derece esneklik sabitleri gibi termoelastik özelliklerinin değişimi incelendi. Atomlar arasındaki fiziksel etkileşmeleri belirlemek için çok cisim etkileşmeleri temeline dayanan Gömülmüş Atom Metodu’nun Sutton-Chen (SC) ve Kuantum Sutton-Chen (K-SC) potansiyel fonksiyonları kullanıldı. Hesaplamalar sonucu elde edilen değerler literatürde mevcut deneysel ve teorik sonuçlarla karşılaştırıldı. Kuantum Sutton-Chen fonksiyonunun deneysel sonuçlara daha yakın değerler ürettiği belirlendi. 

Moleküler dinamik, Fonon spektrumu, Kuantum Sutton-Chen, Cu3Pd alaşımı
  • [1] Mogck, S., Kooi, B.J., De Hosson, J.Th.M. 2004. Influence of metal–oxide interfaces on L12 ordering in Cu3Pd. Acta Materialia, 52 (2004), 4651–4658.
  • [2] Shah, V., Yang, L. 1999. Nanometre fcc clusters versus bulk bcc alloy: the structure of Cu-Pd catalysts. Philosophical Magazine A, 79 (1999), 2025-2049.
  • [3] Wang, X., Ludwig, K.F., Malis, O., Mainville, J. 2001. Temperature dependence of the diffuse-scattering fine structure in Cu-Pd alloys. Physical Review B, 63 (2001), 1-4.
  • [4] Kamakoti, P., Sholl, D.S. 2003. A comparison of hydrogen diffusivities in Pd and CuPd alloys using density functional theory. Journal of Membrane Science, 225 (2003), 145-154.
  • [5] Kamakoti, P., Sholl, D.S. 2005. Ab initio lattice-gas modeling of interstitial hydrogen diffusion in CuPd alloys. Physical Review B, 71 (2005), 1-9.
  • [6] Wu, E.J., Ceder, G. Using bond-length-dependent transferable force constants to predict vibrational entropies in Au-Cu, Au-Pd, and Cu-Pd alloys. Physical Review B, 67 (2003), 1-7.
  • [7] Rao, F., Way, J.D., McCormick, R.l., Paglieri, S.N. Preparation and characterization of Pd-Cu composite membranes for hydrogen separation. Chem. Eng. J. 93 (2003), 11-22.
  • [8] Pan, X.L., Kilgus, M., Goldbach, A. 2005. Low-Temperature H2 and N2 Transport Through Thin Pd66Cu34Hx Layers. Catal. Today, 104 (2005), 225-230.
  • [9] Morreale, B.D., Howard, B.H., Iyoha, O., Enick, R.M., Ling, C., Sholl, D.S. 2007. Experimental and computational prediction of the hydrogen transport properties of Pd4S. Ind. Eng. Chem. Res., 46 (19) (2007), 6313-6319.
  • [10] O' Brien, C.P., Howard, B.H., Miller, J.B., Morreale, B.D., Gellman, A.J. 2010. Inhibition of hydrogen transport through Pd and Pd47Cu53 membranes by H2S at 350 C. J. Membr. Sci., 349 (1–2) (2010), 380-384.
  • [11] Peters, T., Kaleta, T., Stange, M., Bredesen, R. 2011. Development of thin binary and ternary Pd-based alloy membranes for use in hydrogen production. J. Membr. Sci., 383 (1–2) (2011), 124-134.
  • [12] Sharma, R., Sharma, Y. 2015. Hydrogen permeance studies in ordered ternary Cu-Pd alloys, International Journal of Hydrogen Energy. International Journal of Hydrogen Energy, 40 (2015), 14885-14899.
  • [13] Pintar, A. 2003. Catalytic processes for the purification of drinking water and industrial effluents. Catal. Today, 77 (2003), 451-465.
  • [14] Yu Volkov, A. 2004. Improvements to the Microstructure and Physical Properties of Pd-Cu-Ag Alloys. Platinum Met. Rev., 48 (2004), 3-12.
  • [15] Dahal, S., Kafle, G., Kaphle, G. C., and Adhikari, N.P. 2014. Study of Electronic and Magnetic Properties of CuPd, CuPt, Cu3Pd and Cu3Pt: Tight Binding Linear Muffin-Tin Orbitals Approach. Journal of Institute of Science and Technology, 19(1) (2014), 137-144.
  • [16] Li, M., Du, Z., Guo, C., Li, C. 2008. A thermodynamic modeling of the Cu–Pd system, Computer Coupling of Phase Diagrams and Thermochemistry. Computer Coupling of Phase Diagrams and Thermochemistry, 32 (2008), 439–446.
  • [17] Geng, F., Boes, J.R., Kitchin, J.R. 2017. First-principles study of the Cu-Pd phase diagram. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 56 (2017), 224–229.
  • [18] Cagin, T., Dereli, G., Uludogan, M., and Tomak, M. 1999. Thermal and mechanical properties of some fcc transition metals. Phys. Rev. B, 59(4) (1999), 3468-3472.
  • [19] Zhang, X.J., and Chen, C.L. 2012. Phonon dispersion in the Fcc metals Ca, Sr and Yb. J. Low Temp. Phys., 169 (2012), 40-50.
  • [20] Tolpin, K.A., Bachurin, V.I., and Yurasova, V.E. 2012. Features of energy dependence of NiPd sputtering for various ion irradiation angles. Nucl. Instrum. Methods Phys.Res. B, 273 (2012), 76-79.
  • [21] Louail, L., Maouche, D., Roumili, A., and Hachemi, A. 2005. Pressure effect on elastic constants of some transition metals. Mat. Chem. Phys., 91 (2005), 17-20.
  • [22] Marque´s, L.A., Pelaz, L., Aboy, M., Lopez, P., Barbolla, J. 2005. Atomistic modelling of dopant implantation and annealing in Si: damage evolution, dopant diffusion and activation. Comput. Mat. Sci., 33 (2005), 92-105.
  • [23] Shao, Y., Clapp, P.C., Rifkin, J.A. 1996. Molecular dynamics simulation of martensitic transformations in NiAl. Metall. Mater. Trans. A, 27A (1996), 1477-1489.
  • [24] Daw, M.S., Hatcher, R.D. 1985. Application of the embedded atom method to phonons in transition metals. Solid State Comm., 56 (1985), 697-699.
  • [25] Voter, A.F., Chen, S.P. 1987. Accurate Interatomic Potentials for Ni, Al, and Ni3Al. Mat. Res. Soc. Symp. Proc., 82 (1987), 175.
  • [26] Finnis M.W., and Sinclair, J.E. 1984. A simple empirical N-body potential for transition metals. Philosophical Magazine, 50 (1984), 45-55.
  • [27] Sutton, A.P., Chen, J. 1990. Long-range Finnis-Sinclair potentials. J. Philosophical Magazine Letter, 61 (1990), 139-146.
  • [28] Grujicic, M. Dang, P. 1995. Computer simulation of martensitic transformation in Fe-Ni face-centerd cubic alloys. Materials Science and Engineering A, 201 (1995), 194-204.
  • [29] Gui, J., Cui, Y., Xu, S., Wang, Q., Ye, Y., Xiang, M., Wang, R. 1994. Embedded- atom method study of the effect of order degree on the lattice parameters of Cu based shape-memory alloys. J. Phys.: Condens. Matter, 6 (1994), 4601-4614.
  • [30] Caprion, D., Schober, H.R. 2003. Computer Simulation of Liquid and Amorphous Selenium. J. of Non-Crys. Solids, 326 (2003), 369-373.
  • [31] Çagin, T., Qi, Y., Li, H., Kimura, Y., Ikeda, H., Johnson, W.L., Goddard III, W.A. 1999. The quantum Sutton-Chen many-body potential for properties of fcc metals. MRS Symposium Ser., 554 (1999), 43.
  • [32] Parrinello, M., and Rahman, A. 1980. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. Phys. Rev. Lett., 45 (1980), 1196-1201.
  • [33] Parrinello M., and Rahman, A. 1981. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys., 52 (1981), 7182-7190.
  • [34] Wolf, R.J., Mansour, K.A., Lee M.W., and Ray, J.R. 1992. Temperature dependence of elastic constants of embedded-atom models of palladium. Phys. Rev. B, 46 (1992), 8027-8035.
  • [35] Karimi, M., Stapay, G., Kaplan T., and Mostoller, M. 1997. Temperature dependence of the elastic constants of Ni: reliability of EAM in predicting thermal properties. Modelling Simul. Mater. Sci. Eng., 5 (1997), 337-346.
  • [36] Haas, H., Wang, C.Z., Ho, K.M., Fahnle M., and Elsasser, C. 1999. Temperature dependence of the phonon frequencies of molybdenum: a tight-binding molecular dynamics study. J. Phys., Condens. Matter, 11 (1999), 5455-5462.
  • [37] Brüesch, P. 1982. Phonons: Theory and Experiments I. Springer-Verlag, Berlin Heidelberg Germany 19s.
  • [38] Kong, L.T. 2011. Phonon dispersion measured directly from molecular dynamics simulations. Computer Physics Communications, 182 (2011), 2201-2207.
  • [39] Kart, S.Ö., Erbay, A., Kılıç, H., Cagin, T., Tomak, M. 2008. Molecular dynamics study of Cu-Pd ordered alloys. Journal of Achievements in Materials and Manufacturing Engineering, 31(1) (2008), 41-46.
  • [40] Prem, M., Krexner, G., Blaschko, O. 1999. Investigation of the two. martensitic phase transitions hcp-dhcp and dhcp-fcc in Co-0.85 at. %Fe by neutron scattering. Mater. Sci. Eng. A, A273–275 (1999), 491-493.
  • [41] Katsnelson, M. I., Maksyutov, A. F., Trefilov, A. V. 2002. Peculiarities of anharmonic effects in the lattice thermodynamics of fcc metals. Condensed Matter Material Science, 0201412 (2002), 1-8.
Primary Language tr
Subjects Engineering
Journal Section Article
Authors

Author: Sefa Kazanç (Primary Author)
Institution: FIRAT ÜNİVERSİTESİ, EĞİTİM FAKÜLTESİ
Country: Turkey


Dates

Publication Date: August 31, 2018

Bibtex @research article { erciyesfen435582, journal = {Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi}, issn = {1012-2354}, address = {Erciyes University}, year = {2018}, volume = {34}, pages = {20 - 30}, doi = {}, title = {Cu3Pd Alaşımın Fonon Spektrumu ve Termoelastik Özelliklerinin Moleküler Dinamik Benzetimi}, key = {cite}, author = {Kazanç, Sefa} }
APA Kazanç, S . (2018). Cu3Pd Alaşımın Fonon Spektrumu ve Termoelastik Özelliklerinin Moleküler Dinamik Benzetimi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 34 (2), 20-30. Retrieved from http://dergipark.org.tr/erciyesfen/issue/39694/435582
MLA Kazanç, S . "Cu3Pd Alaşımın Fonon Spektrumu ve Termoelastik Özelliklerinin Moleküler Dinamik Benzetimi". Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 34 (2018): 20-30 <http://dergipark.org.tr/erciyesfen/issue/39694/435582>
Chicago Kazanç, S . "Cu3Pd Alaşımın Fonon Spektrumu ve Termoelastik Özelliklerinin Moleküler Dinamik Benzetimi". Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 34 (2018): 20-30
RIS TY - JOUR T1 - Cu3Pd Alaşımın Fonon Spektrumu ve Termoelastik Özelliklerinin Moleküler Dinamik Benzetimi AU - Sefa Kazanç Y1 - 2018 PY - 2018 N1 - DO - T2 - Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi JF - Journal JO - JOR SP - 20 EP - 30 VL - 34 IS - 2 SN - 1012-2354- M3 - UR - Y2 - 2018 ER -
EndNote %0 Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi Cu3Pd Alaşımın Fonon Spektrumu ve Termoelastik Özelliklerinin Moleküler Dinamik Benzetimi %A Sefa Kazanç %T Cu3Pd Alaşımın Fonon Spektrumu ve Termoelastik Özelliklerinin Moleküler Dinamik Benzetimi %D 2018 %J Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi %P 1012-2354- %V 34 %N 2 %R %U
ISNAD Kazanç, Sefa . "Cu3Pd Alaşımın Fonon Spektrumu ve Termoelastik Özelliklerinin Moleküler Dinamik Benzetimi". Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 34 / 2 (August 2018): 20-30.
AMA Kazanç S . Cu3Pd Alaşımın Fonon Spektrumu ve Termoelastik Özelliklerinin Moleküler Dinamik Benzetimi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2018; 34(2): 20-30.
Vancouver Kazanç S . Cu3Pd Alaşımın Fonon Spektrumu ve Termoelastik Özelliklerinin Moleküler Dinamik Benzetimi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2018; 34(2): 30-20.