Year 2019, Volume 21, Issue 1, Pages 56 - 73 2019-04-29

Missing Data Management Practices in L2 Research: The Good, The Bad, and The Ugly

Talip GÖNÜLAL [1]

39 67

Missing data are one of the frequently encountered problems in quantitative research. When neglected or handled improperly, missing data can have adverse impact on research results (e.g., Enders, 2010; Peugh & Enders, 2004; Schafer & Graham, 2002). However, the issue of missing data in quantitative second language (L2) research has largely been ignored when compared to the other sister disciplines such as education and psychology. The purpose of this methodological synthesis was, therefore, to investigate the issue of missing data in L2 research, with a particular focus on L2 researchers’ current missing data management practices. A total of 143 studies published in six leading L2 journals were reviewed in this synthesis. The results indicated that missing data were indeed quite common in L2 research, but L2 researchers’ management and reporting of missing data was often less than optimal. In light of the results, several directed suggestions were made to improve the rigor and quality of L2 research.
Quantitative Research Methods, Statistical Literacy, Missing Data
  • Author (2016)
  • Author (2018)
  • Author & co-author (2015).
  • Author & co-authors (2017).
  • Author & co-authors (forthcoming).
  • Bennett, D. A. (2001). How can I deal with missing data in my study? Australian and New Zealand Journal of Public Health, 25(5), 464-469.
  • Cheema, J. R. (2014). A review of missing data handling methods in education research. Review of Educational Research, 84(4), 487-508.
  • Cohen, J., & Cohen, P. (1983). Applied multiple regression/ correlation analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Denies, K., Yashima, T., & Janssen, R. (2015). Classroom versus societal willingness to communicate: Investigating French as a second language in Flanders. The Modern Language Journal, 99(4), 718-739.
  • Derrick, D. J. (2016). Instrument reporting practices in second language research. TESOL Quarterly, 50(1), 132-153.
  • Dong, Y., & Peng, C. Y. J. (2013). Principled missing data methods for researchers. SpringerPlus, 2(1), 1-17.
  • Enders, C. (2010). Applied missing data analysis. New York, NY: Guilford Press.
  • Goodwin, A. P., August, D., & Calderon, M. (2015). Reading in multiple orthographies: Differences and similarities in reading in Spanish and English for English Learners. Language Learning, 65(3), 596-630.
  • Karanja, E., Zaveri, J., & Ahmed, A. (2013). How do MIS researchers handle missing data in survey-based research: A content analysis approach. International Journal of Information Management, 33(5), 734-751.
  • Khajavy, G. H., Ghonsooly, B., Hosseini Fatemi, A., & Choi, C. W. (2016). Willingness to communicate in English: A microsystem model in the Iranian EFL classroom context. TESOL Quarterly, 50(1), 154-180.
  • Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159-174.
  • Loewen, S., Lavolette, E., Spino, L. A., Papi, M., Schmidtke, J., Sterling, S., & Wolff, D. (2014). Statistical literacy among applied linguists and second language acquisition researchers. TESOL Quarterly, 48, 360–388.
  • Mahboob, A., Paltridge, B., Phakiti, A., Wagner, E., Starfield, S., Burns, A., Jones, R.H. & De Costa, P. I. (2016). TESOL Quarterly research guidelines. TESOL Quarterly, 50(1), 42-65.
  • Marsden, E., Thompson, S., & Plonsky, L. (2018). A methodological synthesis of self-paced reading in second language research. Applied Psycholinguistics. doi:10.1017/S0142716418000036
  • McKnight, P. E., McKnight, K. M., Sidani, S., & Figueredo, A. J. (2007). Missing data: A gentle introduction. New York, NY: Guilford Press.
  • Newman, D. A. (2014). Missing data: Five practical guidelines. Organizational Research Methods, 17(4), 372-411.
  • Norris, J. M., Ross, S. J., & Schoonen, R. (2015). Improving second language quantitative research. Language Learning, 65(S1), 1-8.
  • Peng, C., Harwell, M., Liou, S., & Ehman, L. (2006). Advances in missing data methods and implications for educational research. In S. S. Sawilowsky (Ed.), Real data analysis (pp. 31–78). Charlotte, NC: New Information Age.
  • Peugh, J. L., & Enders, C. K. (2004). Missing data in educational research: A review of reporting practices and suggestions for improvement. Review of educational research, 74(4), 525-556.
  • Plonsky, L. (2011). Study quality in SLA: A cumulative and developmental assessment of designs, analyses, reporting practices, and outcomes in quantitative L2 research (Unpublished doctoral dissertation). Michigan State University, East Lansing, MI.
  • Plonsky, L. (2013). Study quality in SLA: An assessment of designs, analyses, and reporting practices in quantitative L2 research. Studies in Second Language Acquisition, 35(4), 655-687.
  • Plonsky, L. (2014). Study quality in quantitative L2 research (1990–2010): A methodological synthesis and call for reform. The Modern Language Journal, 98(1), 450-470.
  • Plonsky, L. (2015). Advancing quantitative methods in second language research. New York, NY: Routledge.
  • Pichette, F., Béland, S., Jolani, S., & Lesniewska, J. (2015). The handling of missing binary data in language research. Studies in Second Language Learning and Teaching, 5(1), 153–169.Roth, P. L. (1994). Missing data: A conceptual review for applied psychologists. Personnel Psychology, 47(3), 537-560.
  • Osborne, J. W. (2013). Best practices in data cleaning: A complete guide to everything you need to do before and after collecting your data. Thousand Oak, CA: Sage.
  • Rousseau, M., Simon, M., Bertrand, R., & Hachey, K. (2012). Reporting missing data: a study of selected articles published from 2003–2007. Quality & Quantity, 46(5), 1393-1406.
  • Schafer, J. L. (1999). Multiple imputation: a primer. Statistical Methods in Medical Research, 8(1), 3-15.
  • Schafer, J. L., & Graham, J. W. (2002). Missing data: our view of the state of the art. Psychological Methods, 7(2), 147-177.
  • Schlomer, G. L., Bauman, S., & Card, N. A. (2010). Best practices for missing data management in counseling psychology. Journal of Counseling psychology, 57(1), 1-10.
  • Tabachnick B., & Fidell, L. (2013). Using multivariate statistics. Boston: Pearson Education Inc.
  • Teng, L. S., & Zhang, L. J. (2016). A questionnaire‐based validation of multidimensional models of self‐regulated learning strategies. The Modern Language Journal, 100(3), 674-701.
  • Wilkinson, L. & Task Force on Statistical Inference, (1999). Statistical methods in psychology journals: Guidelines and explanations. American Psychologist, 54(8), 594-604.
  • Winke, P. (2014). Testing hypotheses about language learning using structural equation modeling. Annual Review of Applied Linguistics, 34, 102-122.
Primary Language en
Subjects Education and Educational Research
Journal Section In This Issue
Authors

Orcid: 0000-0001-6441-4278
Author: Talip GÖNÜLAL (Primary Author)
Institution: ERZİNCAN ÜNİVERSİTESİ
Country: Turkey


Dates

Publication Date: April 29, 2019

Bibtex @research article { erziefd448559, journal = {Erzincan Üniversitesi Eğitim Fakültesi Dergisi}, issn = {2148-7758}, eissn = {2148-7510}, address = {Erzincan University}, year = {2019}, volume = {21}, pages = {56 - 73}, doi = {10.17556/erziefd.448559}, title = {Missing Data Management Practices in L2 Research: The Good, The Bad, and The Ugly}, key = {cite}, author = {GÖNÜLAL, Talip} }
APA GÖNÜLAL, T . (2019). Missing Data Management Practices in L2 Research: The Good, The Bad, and The Ugly. Erzincan Üniversitesi Eğitim Fakültesi Dergisi, 21 (1), 56-73. DOI: 10.17556/erziefd.448559
MLA GÖNÜLAL, T . "Missing Data Management Practices in L2 Research: The Good, The Bad, and The Ugly". Erzincan Üniversitesi Eğitim Fakültesi Dergisi 21 (2019): 56-73 <http://dergipark.org.tr/erziefd/issue/44871/448559>
Chicago GÖNÜLAL, T . "Missing Data Management Practices in L2 Research: The Good, The Bad, and The Ugly". Erzincan Üniversitesi Eğitim Fakültesi Dergisi 21 (2019): 56-73
RIS TY - JOUR T1 - Missing Data Management Practices in L2 Research: The Good, The Bad, and The Ugly AU - Talip GÖNÜLAL Y1 - 2019 PY - 2019 N1 - doi: 10.17556/erziefd.448559 DO - 10.17556/erziefd.448559 T2 - Erzincan Üniversitesi Eğitim Fakültesi Dergisi JF - Journal JO - JOR SP - 56 EP - 73 VL - 21 IS - 1 SN - 2148-7758-2148-7510 M3 - doi: 10.17556/erziefd.448559 UR - https://doi.org/10.17556/erziefd.448559 Y2 - 2019 ER -
EndNote %0 Erzincan University Journal of Education Faculty Missing Data Management Practices in L2 Research: The Good, The Bad, and The Ugly %A Talip GÖNÜLAL %T Missing Data Management Practices in L2 Research: The Good, The Bad, and The Ugly %D 2019 %J Erzincan Üniversitesi Eğitim Fakültesi Dergisi %P 2148-7758-2148-7510 %V 21 %N 1 %R doi: 10.17556/erziefd.448559 %U 10.17556/erziefd.448559
ISNAD GÖNÜLAL, Talip . "Missing Data Management Practices in L2 Research: The Good, The Bad, and The Ugly". Erzincan Üniversitesi Eğitim Fakültesi Dergisi 21 / 1 (April 2019): 56-73. https://doi.org/10.17556/erziefd.448559
AMA GÖNÜLAL T . Missing Data Management Practices in L2 Research: The Good, The Bad, and The Ugly. Erzincan Üniversitesi Eğitim Fakültesi Dergisi. 2019; 21(1): 56-73.
Vancouver GÖNÜLAL T . Missing Data Management Practices in L2 Research: The Good, The Bad, and The Ugly. Erzincan Üniversitesi Eğitim Fakültesi Dergisi. 2019; 21(1): 73-56.