BibTex RIS Kaynak Göster

THE THERMODYNAMIC AND LATTICE VIBRATIONAL PROPERTIES OF CuPd ALLOY UNDER HYDROSTATIC PRESSURE

Yıl 2019, Cilt: 20 Sayı: 2, 143 - 152, 01.06.2019
https://doi.org/10.18038/aubtda.438120

Öz

In this paper, the effects of hydrostatic pressure on the thermodynamic and vibrational properties such as bulk modulus, second order elastic constants, acoustic phonon frequencies, density of state (DOS) and grüneisen parameters (γ) of Cu-%20Pd alloys was examined by using the molecular dynamics (MD) simulation. For modelling of interaction between atoms in the model system were used Quantum Sutton-Chen (Q-SC) potential function. The simulation results that obtained from this study were compared with the experimental and theoretical results in the literature.

Kaynakça

  • [1] Shah V, Yang L. Nanometre fcc clusters versus bulk bcc alloy: the structure of Cu-Pd catalysts. Philosophical Magazine A 1999; 79: 2025-2049.
  • [2] Wang X, Ludwig K.F, Malis O, Mainville J. Temperature dependence of the diffuse-scattering fine structure in Cu-Pd alloys. Physical Review B 2001; 63: 1-4.
  • [3] Kamakoti P, Sholl D.S. A comparison of hydrogen diffusivities in Pd and CuPd alloys using density functional theory. Journal of Membrane Science 2003; 225: 145-154.
  • [4] Kamakoti P, Sholl D.S. Ab initio lattice-gas modeling of interstitial hydrogen diffusion in CuPd alloys. Physical Review B 2005; 71: 1-9.
  • [5] Wu E.J, Ceder G. Using bond-length-dependent transferable force constants to predict vibrational entropies in Au-Cu, Au-Pd, and Cu-Pd alloys. Physical Review B 2003; 67: 1-7.
  • [6] Rao F, Way J.D, McCormick R.l, Paglieri S.N. Preparation and characterization of Pd-Cu composite membranes for hydrogen separation. Chem Eng J 2003; 93: 11-22.
  • [7] Pan X.L, Kilgus M, Goldbach A. Low-Temperature H2 and N2 Transport Through Thin Pd66Cu34Hx Layers. Catal Today 2005; 104: 225-230.
  • [8] Morreale B.D, Howard B.H, Iyoha O, Enick R.M, Ling C, Sholl D.S. Experimental and computational prediction of the hydrogen transport properties of Pd4S. Ind Eng Chem Res 2007; 46 (19): 6313-6319.
  • [9] O' Brien C.P, Howard B.H, Miller J.B, Morreale B.D, Gellman A.J. Inhibition of hydrogen transport through Pd and Pd47Cu53 membranes by H2S at 350 C. J Membr Sci 2010; 349 (1–2): 380-384.
  • [10] Peters T, Kaleta T, Stange M, Bredesen R. Development of thin binary and ternary Pd-based alloy membranes for use in hydrogen production. J Membr Sci 2011; 383 (1–2): 124-134.
  • [11] Sharma R, Sharma Y. Hydrogen permeance studies in ordered ternary Cu-Pd alloys. International Journal of Hydrogen Energy 2015; 40: 14885-14899.
  • [12] Volkov A. Y. Improvements to the Microstructure and Physical Properties of Pd-Cu-Ag Alloys. Platinum Met Rev 2004; 48: 3-12.
  • [13] Pintar A. Catalytic processes for the purification of drinking water and industrial effluents. Catal Today 2003; 77: 451-465.
  • [14] Kart S.Ö, Erbay A, Kılıç H, Cagin T, Tomak M. Molecular dynamics study of Cu-Pd ordered alloys. Journal of Achievements in Materials and Manufacturing Engineering 2008; 31(1): 41-46.
  • [15] Wei L, Wang X. P, Liu B, Zhang Y. Y, Lu X. S, Yang Y. G, Zhang H. J and Zhao X. The role of acoustic phonon anharmonicity in determining thermal conductivity of CdSiP2 and AgGaS2: First principles calculations. Aip Advances 2015; 5: 127236.
  • [16] Vocadlo N.L and Price G. D. The grüneisen parameter-computer calculations via lattice dynamics. Physics of the Earth and Planetary Interiors 1994; 82: 261-270.
  • [17] Mittal R, Gupta M.K, Chaplot S.L. Phonons and anomalous thermal expansion behaviour in crystalline solids. Progress in Materials Science 2018; 92: 360–445.
  • [18] Cagin T, Dereli G, Uludogan M and Tomak M. Thermal and mechanical properties of some fcc transition metals. Physical Review B 1999; 59(4): 3468-3472.
  • [19] Zhang X.J and Chen C.L. Phonon dispersion in the fcc metals Ca, Sr and Yb. J Low Temp Phys 2012; 169: 40-50.
  • [20] Tolpin K.A, Bachurin V.I and Yurasova V.E. Features of energy dependence of NiPd sputtering for various ion irradiation angles. Nucl Instrum Methods Phys Res B 2012; 273: 76-79.
  • [21] Louail L, Maouche D, Roumili A and Hachemi A. Pressure effect on elastic constants of some transition metals. Mat Chem Phys 2005; 91: 17-20.
  • [22] Marque´s L.A, Pelaz L, Aboy M, Lopez P, Barbolla J. Atomistic modelling of dopant implantation and annealing in Si: damage evolution, dopant diffusion and activation. Comput Mat Sci 2005; 33: 92-105.
  • [23] Shao Y, Clapp P.C, Rifkin J.A. Molecular dynamics simulation of martensitic transformations in NiAl. Metall Mater Trans A 1996; 27A: 1477-1489.
  • [24] Daw M.S, Hatcher R.D. Application of the embedded atom method to phonons in transition metals. Solid State Comm 1985; 56: 697-699.
  • [25] Voter A.F, Chen S.P. Accurate Interatomic Potentials for Ni, Al, and Ni3Al. Mat Res Soc Symp Proc 1987; 82: 175.
  • [26] Finnis M.W and Sinclair J.E. A simple empirical N-body potential for transition metals. Philosophical Magazine 1984; 50: 45-55.
  • [27] Sutton A.P, Chen J. Long-range Finnis-Sinclair potentials. J Philosophical Magazine Letter 1990; 61: 139-146.
  • [28] Grujicic M, Dang P. Computer simulation of martensitic transformation in Fe-Ni face-centerd cubic alloys. Materials Science and Engineering A 1995; 201: 194-204.
  • [29] Gui J, Cui Y, Xu S, Wang Q, Ye Y, Xiang M, Wang R. Embedded- atom method study of the effect of order degree on the lattice parameters of Cu based shape-memory alloys. J Phys Condens Matter 1994; 6: 4601-4614.
  • [30] Parrinello M and Rahman A. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. Phys Rev Lett 1980; 45: 1196-1201.
  • [31] Parrinello M and Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys 1981; 52: 7182-7190.
  • [32] Kazanc S, Ozgen S, Adiguzel O. Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy. Physica B 2003; 334: 375-381.
  • [33] Çagin T, Qi Y, Li H, Kimura Y, Ikeda H, Johnson W.L, Goddard III W.A. The quantum Sutton-Chen many-body potential for properties of fcc metals. MRS Symposium Ser 1999; 554: 43.
  • [34] Wolf R.J, Mansour K.A, Lee M.W and Ray J.R. Temperature dependence of elastic constants of embedded-atom models of palladium. Physical Review B 1992; 46: 8027-8035.
  • [35] Karimi M, Stapay G, Kaplan T and Mostoller M. Temperature dependence of the elastic constants of Ni: reliability of EAM in predicting thermal properties. Modelling Simul Mater Sci Eng 1997; 5: 337-346.
  • [36] Haas H, Wang C.Z, Ho K.M, Fahnle M and Elsasser C. Temperature dependence of the phonon frequencies of molybdenum: a tight-binding molecular dynamics study. J Phys Condens Matter 1999; 11: 5455-5462.
  • [37] Kong L.T. Phonon dispersion measured directly from molecular dynamics simulations. Computer Physics Communications 2011; 182: 2201-2207.
  • [38] Vocadlo L, Poirer J.P and Price G.D. Grüneisen parameters and isothermal equations of state. American Mineralogist. 2000; 85: 187-193.
  • [39] Subramanian P.R and Laughlin D.E. Phase diagram Evaluations: Section II. Journal of Phase Equilibrian 1991;12(2): 231-243.
  • [40] Kazanc S, Ciftci Y.O, Colakoglu K, Ozgen S. Temperature and pressure dependence of the some elastic and lattice dynamical properties of copper: a molecular dynamics study. Physica B 2006; 381: 96–102.
  • [41] Dahal S, Kafle G, Kaphle G. C and Adhikari N. P. Study of Electronic and Magnetic Properties of CuPd, CuPt, Cu3Pd and Cu3Pt: Tight Binding Linear Muffin-Tin Orbitals Approach. Journal of Institute of Science and Technology 2014; 19(1): 137-144.
  • [42] Brüesch P. Phonon: Theory and Experiments I, Springer Series in Solid State Sciences 34, New York, 1982, pp. 84-85.
  • [43] Körözlü N. Basic Physical Properties Calculations of CdxZn1-xX(X=Te, Se, S) Alloys and WP, GdX (X=Bi, Sb) Compounds with Methods Based on Denstiy Functional Theory (DFT). PhD, Gazi University, Ankara, Turkey, 2009.
  • [44] Sürücü G. The Investigation of the Structural, Elastic, Thermodynamic and Vibrational Properties of Some A3B (L12) Type Alloys Using Ab Initio Method. MSc, Gazi University, Ankara, Turkey, 2009.
Yıl 2019, Cilt: 20 Sayı: 2, 143 - 152, 01.06.2019
https://doi.org/10.18038/aubtda.438120

Öz

Kaynakça

  • [1] Shah V, Yang L. Nanometre fcc clusters versus bulk bcc alloy: the structure of Cu-Pd catalysts. Philosophical Magazine A 1999; 79: 2025-2049.
  • [2] Wang X, Ludwig K.F, Malis O, Mainville J. Temperature dependence of the diffuse-scattering fine structure in Cu-Pd alloys. Physical Review B 2001; 63: 1-4.
  • [3] Kamakoti P, Sholl D.S. A comparison of hydrogen diffusivities in Pd and CuPd alloys using density functional theory. Journal of Membrane Science 2003; 225: 145-154.
  • [4] Kamakoti P, Sholl D.S. Ab initio lattice-gas modeling of interstitial hydrogen diffusion in CuPd alloys. Physical Review B 2005; 71: 1-9.
  • [5] Wu E.J, Ceder G. Using bond-length-dependent transferable force constants to predict vibrational entropies in Au-Cu, Au-Pd, and Cu-Pd alloys. Physical Review B 2003; 67: 1-7.
  • [6] Rao F, Way J.D, McCormick R.l, Paglieri S.N. Preparation and characterization of Pd-Cu composite membranes for hydrogen separation. Chem Eng J 2003; 93: 11-22.
  • [7] Pan X.L, Kilgus M, Goldbach A. Low-Temperature H2 and N2 Transport Through Thin Pd66Cu34Hx Layers. Catal Today 2005; 104: 225-230.
  • [8] Morreale B.D, Howard B.H, Iyoha O, Enick R.M, Ling C, Sholl D.S. Experimental and computational prediction of the hydrogen transport properties of Pd4S. Ind Eng Chem Res 2007; 46 (19): 6313-6319.
  • [9] O' Brien C.P, Howard B.H, Miller J.B, Morreale B.D, Gellman A.J. Inhibition of hydrogen transport through Pd and Pd47Cu53 membranes by H2S at 350 C. J Membr Sci 2010; 349 (1–2): 380-384.
  • [10] Peters T, Kaleta T, Stange M, Bredesen R. Development of thin binary and ternary Pd-based alloy membranes for use in hydrogen production. J Membr Sci 2011; 383 (1–2): 124-134.
  • [11] Sharma R, Sharma Y. Hydrogen permeance studies in ordered ternary Cu-Pd alloys. International Journal of Hydrogen Energy 2015; 40: 14885-14899.
  • [12] Volkov A. Y. Improvements to the Microstructure and Physical Properties of Pd-Cu-Ag Alloys. Platinum Met Rev 2004; 48: 3-12.
  • [13] Pintar A. Catalytic processes for the purification of drinking water and industrial effluents. Catal Today 2003; 77: 451-465.
  • [14] Kart S.Ö, Erbay A, Kılıç H, Cagin T, Tomak M. Molecular dynamics study of Cu-Pd ordered alloys. Journal of Achievements in Materials and Manufacturing Engineering 2008; 31(1): 41-46.
  • [15] Wei L, Wang X. P, Liu B, Zhang Y. Y, Lu X. S, Yang Y. G, Zhang H. J and Zhao X. The role of acoustic phonon anharmonicity in determining thermal conductivity of CdSiP2 and AgGaS2: First principles calculations. Aip Advances 2015; 5: 127236.
  • [16] Vocadlo N.L and Price G. D. The grüneisen parameter-computer calculations via lattice dynamics. Physics of the Earth and Planetary Interiors 1994; 82: 261-270.
  • [17] Mittal R, Gupta M.K, Chaplot S.L. Phonons and anomalous thermal expansion behaviour in crystalline solids. Progress in Materials Science 2018; 92: 360–445.
  • [18] Cagin T, Dereli G, Uludogan M and Tomak M. Thermal and mechanical properties of some fcc transition metals. Physical Review B 1999; 59(4): 3468-3472.
  • [19] Zhang X.J and Chen C.L. Phonon dispersion in the fcc metals Ca, Sr and Yb. J Low Temp Phys 2012; 169: 40-50.
  • [20] Tolpin K.A, Bachurin V.I and Yurasova V.E. Features of energy dependence of NiPd sputtering for various ion irradiation angles. Nucl Instrum Methods Phys Res B 2012; 273: 76-79.
  • [21] Louail L, Maouche D, Roumili A and Hachemi A. Pressure effect on elastic constants of some transition metals. Mat Chem Phys 2005; 91: 17-20.
  • [22] Marque´s L.A, Pelaz L, Aboy M, Lopez P, Barbolla J. Atomistic modelling of dopant implantation and annealing in Si: damage evolution, dopant diffusion and activation. Comput Mat Sci 2005; 33: 92-105.
  • [23] Shao Y, Clapp P.C, Rifkin J.A. Molecular dynamics simulation of martensitic transformations in NiAl. Metall Mater Trans A 1996; 27A: 1477-1489.
  • [24] Daw M.S, Hatcher R.D. Application of the embedded atom method to phonons in transition metals. Solid State Comm 1985; 56: 697-699.
  • [25] Voter A.F, Chen S.P. Accurate Interatomic Potentials for Ni, Al, and Ni3Al. Mat Res Soc Symp Proc 1987; 82: 175.
  • [26] Finnis M.W and Sinclair J.E. A simple empirical N-body potential for transition metals. Philosophical Magazine 1984; 50: 45-55.
  • [27] Sutton A.P, Chen J. Long-range Finnis-Sinclair potentials. J Philosophical Magazine Letter 1990; 61: 139-146.
  • [28] Grujicic M, Dang P. Computer simulation of martensitic transformation in Fe-Ni face-centerd cubic alloys. Materials Science and Engineering A 1995; 201: 194-204.
  • [29] Gui J, Cui Y, Xu S, Wang Q, Ye Y, Xiang M, Wang R. Embedded- atom method study of the effect of order degree on the lattice parameters of Cu based shape-memory alloys. J Phys Condens Matter 1994; 6: 4601-4614.
  • [30] Parrinello M and Rahman A. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. Phys Rev Lett 1980; 45: 1196-1201.
  • [31] Parrinello M and Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys 1981; 52: 7182-7190.
  • [32] Kazanc S, Ozgen S, Adiguzel O. Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy. Physica B 2003; 334: 375-381.
  • [33] Çagin T, Qi Y, Li H, Kimura Y, Ikeda H, Johnson W.L, Goddard III W.A. The quantum Sutton-Chen many-body potential for properties of fcc metals. MRS Symposium Ser 1999; 554: 43.
  • [34] Wolf R.J, Mansour K.A, Lee M.W and Ray J.R. Temperature dependence of elastic constants of embedded-atom models of palladium. Physical Review B 1992; 46: 8027-8035.
  • [35] Karimi M, Stapay G, Kaplan T and Mostoller M. Temperature dependence of the elastic constants of Ni: reliability of EAM in predicting thermal properties. Modelling Simul Mater Sci Eng 1997; 5: 337-346.
  • [36] Haas H, Wang C.Z, Ho K.M, Fahnle M and Elsasser C. Temperature dependence of the phonon frequencies of molybdenum: a tight-binding molecular dynamics study. J Phys Condens Matter 1999; 11: 5455-5462.
  • [37] Kong L.T. Phonon dispersion measured directly from molecular dynamics simulations. Computer Physics Communications 2011; 182: 2201-2207.
  • [38] Vocadlo L, Poirer J.P and Price G.D. Grüneisen parameters and isothermal equations of state. American Mineralogist. 2000; 85: 187-193.
  • [39] Subramanian P.R and Laughlin D.E. Phase diagram Evaluations: Section II. Journal of Phase Equilibrian 1991;12(2): 231-243.
  • [40] Kazanc S, Ciftci Y.O, Colakoglu K, Ozgen S. Temperature and pressure dependence of the some elastic and lattice dynamical properties of copper: a molecular dynamics study. Physica B 2006; 381: 96–102.
  • [41] Dahal S, Kafle G, Kaphle G. C and Adhikari N. P. Study of Electronic and Magnetic Properties of CuPd, CuPt, Cu3Pd and Cu3Pt: Tight Binding Linear Muffin-Tin Orbitals Approach. Journal of Institute of Science and Technology 2014; 19(1): 137-144.
  • [42] Brüesch P. Phonon: Theory and Experiments I, Springer Series in Solid State Sciences 34, New York, 1982, pp. 84-85.
  • [43] Körözlü N. Basic Physical Properties Calculations of CdxZn1-xX(X=Te, Se, S) Alloys and WP, GdX (X=Bi, Sb) Compounds with Methods Based on Denstiy Functional Theory (DFT). PhD, Gazi University, Ankara, Turkey, 2009.
  • [44] Sürücü G. The Investigation of the Structural, Elastic, Thermodynamic and Vibrational Properties of Some A3B (L12) Type Alloys Using Ab Initio Method. MSc, Gazi University, Ankara, Turkey, 2009.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Sefa Kazanç 0000-0002-8896-8571

Yayımlanma Tarihi 1 Haziran 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 20 Sayı: 2

Kaynak Göster

AMA Kazanç S. THE THERMODYNAMIC AND LATTICE VIBRATIONAL PROPERTIES OF CuPd ALLOY UNDER HYDROSTATIC PRESSURE. Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering. Haziran 2019;20(2):143-152. doi:10.18038/aubtda.438120