Derleme
BibTex RIS Kaynak Göster

Diyetle Alınan Fruktozun Kronik Hastalıkların Gelişmesinde ve Prognozunda Etkisi Var mıdır?

Yıl 2019, Cilt: 27 Sayı: 1, 63 - 78, 01.02.2019

Öz

DOI: 10.26650/FNJN346677


Diyetteki fruktozun kaynakları bal, meyve
ve sükrozun yanı sıra yüksek fruktozlu nişasta bazlı şeker ile tatlandırılmış
çeşitli yiyecek ve içeceklerdir. Fruktoz; diyetle alınan toplam enerji miktarı
ile lipogenezi arttırarak obeziteye yol açabilmektedir. Alım dozu, süresi ve
fruktozun kaynağına bağlı olarak, alınan fruktozun çoğu metabolize edilerek de
novo lipit sentezine katılabilmektedir. Kan glikoz ve insülin seviyelerini
etkileyerek insülin direnci oluşumu, non-alkolik karaciğer yağlanması ve böbrek
hastalıkları riskini de arttırabilmektedir. Ayrıca yüksek fruktoz tüketimi
organizmadaki inflamatuar süreçleri başlatabilmektedir. Öte yandan tipik batı
tarzı diyette yüksek fruktozla birlikte yüksek yağlı veya tuzlu beslenme
fruktozun kronik hastalıklar üzerindeki bu olası etkilerini arttırabilmektedir.
Sonuç olarak klinik çalışmalarla tam olarak desteklenmemiş olsa da deneysel çalışmaların
sonuçlarına göre yüksek miktarda fruktoz alımının kronik hastalık riskini arttırabileceği
düşünülmektedir. Ayrıca tipik batı tarzı yüksek yağlı, şekerli ve tuzlu diyetle
birlikte fazla miktarda fruktoz tüketiminin obezite, kardiyovasküler hastalıklar
gibi kronik hastalıkların riskini arttırabileceği ve metabolik sendrom
parametrelerini daha fazla kötüleştirebileceği unutulmamalıdır. Ancak sentetik
fruktoz, yüksek miktarda alındığında bazı olumsuz metabolik etkilere neden
olabilse de kaynağı meyve ya da bal olan fruktozun yüksek miktarda tüketiminde
bu olumsuz etkiler görülmemekte ya da tüketim miktarına bağlı olarak daha az
oluşabilmektedir.

Kaynakça

  • Aeberli, I., Gerber, P. A., Hochuli, M., Kohler, S., Haile, S. R., Gouni-Berthold, I., et al. (2011). Low to moderate sugar-sweetened beverage consumption impairs glucose and lipid metabolism and promotes inflammation in healthy young men: a randomized controlled trial. Am J Clin Nutr, 94(2), 479-485. Aune, D., Chan, D. S., Vieira, A. R., Navarro Rosenblatt, D. A., Vieira, R., Greenwood, D. C., et al. (2012). Dietary fructose, carbohydrates, glycemic indices and pancreatic cancer risk: a systematic review and meta-analysis of cohort studies. Ann Oncol, 23(10), 2536-2546. Baena, M., Sanguesa, G., Davalos, A., Latasa, M. J., Sala-Vila, A., Sanchez, R. M., et al. (2016). Fructose, but not glucose, impairs insulin signaling in the three major insulin-sensitive tissues. Sci Rep, 6, 1-15. Baena, M., Sanguesa, G., Hutter, N., Beltran, J. M., Sanchez, R. M., Roglans, N., et al. (2017). Liquid fructose in Western-diet-fed mice impairs liver insulin signaling and causes cholesterol and triglyceride loading without changing calorie intake and body weight. J Nutr Biochem, 40, 105-115. Balakumar, M., Raji, L., Prabhu, D., Sathishkumar, C., Prabu, P., Mohan, V., et al. (2016). High-fructose diet is as detrimental as high-fat diet in the induction of insulin resistance and diabetes mediated by hepatic/pancreatic endoplasmic reticulum (ER) stress. Mol Cell Biochem. 423(1-2), 93-104.
  • Biggelaar, L. J., Eussen, S. J., Sep, S. J., Mari, A., Ferrannini, E., Dongen, M. C., et al. (2017). Associations of Dietary Glucose, Fructose, and Sucrose with beta-Cell Function, Insulin Sensitivity, and Type 2 Diabetes in the Maastricht Study. Nutrients, 9(4), pii: E380. Busserolles, J., Gueux, E., Rock, E., Mazur, A., & Rayssiguier, Y. (2002). Substituting honey for refined carbohydrates protects rats from hypertriglyceridemic and prooxidative effects of fructose. J Nutr, 132(11), 3379-3382. Cabral, P. D., Hong, N. J., Hye Khan, M. A., Ortiz, P. A., Beierwaltes, W. H., Imig, J. D., et al. (2014). Fructose stimulates Na/H exchange activity and sensitizes the proximal tubule to angiotensin II. Hypertension, 63(3), e68-73. Cai, W., Li, J., Shi, J., Yang, B., Tang, J., Truby, H., et al. (2017). Acute metabolic and endocrine responses induced by glucose and fructose in healthy young subjects: A double-blinded, randomized, crossover trial. Clin Nutr. 37(2), 459-470. Carran, E. L., White, S. J., Reynolds, A. N., Haszard, J. J., & Venn, B. J. (2016). Acute effect of fructose intake from sugar-sweetened beverages on plasma uric acid: a randomised controlled trial. Eur J Clin Nutr, 70(9), 1034-1038.
  • Catena, C., Cavarape, A., Novello, M., Giacchetti, G., & Sechi, L. A. (2003). Insulin receptors and renal sodium handling in hypertensive fructose-fed rats. Kidney Int, 64(6), 2163-2171. Chiavaroli, L., de Souza, R. J., Ha, V., Cozma, A. I., Mirrahimi, A., Wang, D. D., et al. (2015). Effect of fructose on established lipid targets: A systematic review and meta-analysis of controlled feeding trials. J Am Heart Assoc, 4(9), e001700. Chiu, S., Sievenpiper, J. L., de Souza, R. J., Cozma, A. I., Mirrahimi, A., Carleton, A. J., et al. (2014). Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis of controlled feeding trials. Eur J Clin Nutr, 68(4), 416-423. Chung, M., Ma, J., Patel, K., Berger, S., Lau, J., & Lichtenstein, A. H. (2014). Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: A systematic review and meta-analysis. Am J Clin Nutr, 100(3), 833-849. Coate, K. C., Smith, M. S., Shiota, M., Irimia, J. M., Roach, P. J., Farmer, B., et al. (2013). Hepatic glucose metabolism in late pregnancy: Normal versus high-fat and -fructose diet. Diabetes, 62(3), 753-761. Cozma, A. I., Sievenpiper, J. L., de Souza, R. J., Chiavaroli, L., Ha, V., Wang, D. D., et al. (2012). Effect of fructose on glycemic control in diabetes: a systematic review and meta-analysis of controlled feeding trials. Diabetes Care, 35(7), 1611-1620. Drewnowski, A., & Bellisle, F. (2007). Liquid calories, sugar, and body weight. Am J Clin Nutr, 85(3), 651-661. Dupas, J., Feray, A., Goanvec, C., Guernec, A., Samson, N., Bougaran, P., et al. (2017). Metabolic Syndrome and Hypertension Resulting from Fructose Enriched Diet in Wistar Rats. Biomed Res Int, 2017, 1-10. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA); Scientific Opinion on Dietary Reference Values for carbohydrates and dietary fibre. (2010). EFSA Journal 8(3):1462[77 pp.]. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to fructose and reduction of post-prandial glycaemic responses (ID 558) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. (2011). EFSA Journal, 9(6):2223. [15 pp.]. Fan, X., Liu, H., Liu, M., Wang, Y., Qiu, L., & Cui, Y. (2017). Increased utilization of fructose has a positive effect on the development of breast cancer. Peer J, 5, e3804. Francisqueti, F. V., Santos, K. C., Ferron, A. J., Lo, A. T., Minatel, I. O., Campos, D. H., et al. (2016). Fructose: Toxic effect on cardiorenal risk factors and redox state. SAGE Open Med, 4, 1-6. Fu, Y. C., Yin, S. C., Chi, C. S., Hwang, B., & Hsu, S. L. (2006). Norepinephrine induces apoptosis in neonatal rat endothelial cells via a ROS-dependent JNK activation pathway. Apoptosis, 11(11), 2053-2063. Gallagher, C., Keogh, J. B., Pedersen, E., & Clifton, P. M. (2016). Fructose acute effects on glucose, insulin, and triglyceride after a solid meal compared with sucralose and sucrose in a randomized crossover study. Am J Clin Nutr, 103(6), 1453-1457. Glushakova, O., Kosugi, T., Roncal, C., Mu, W., Heinig, M., Cirillo, P., et al. (2008). Fructose induces the inflammatory molecule ICAM-1 in endothelial cells. J Am Soc Nephrol, 19(9), 1712-1720. Grembecka, M. (2015). Natural sweeteners in a human diet. Rocz Panstw Zakl Hig, 66(3), 195-202. Hacettepe Üniversitesi Beslenme ve Diyetetik Bölümü. (2015). Türkiye’ye Özgü Beslenme Rehberi. T.C. Sağlık Bakanlığı Temel Sağlık Hizmetleri Genel Müdürlüğü, 9-62. Ankara. Hu, Q. H., Wang, C., Li, J. M., Zhang, D. M., & Kong, L. D. (2009). Allopurinol, rutin, and quercetin attenuate hyperuricemia and renal dysfunction in rats induced by fructose intake: renal organic ion transporter involvement. Am J Physiol Renal Physiol, 297(4), F1080-1091. Ibraheem, Z. O., Basir, R., Aljobory, A., Ibrahim, O. E., Alsumaidaee, A., & Yam, M. F. (2014). Impact of gentamicin coadministration along with high fructose feeding on progression of renal failure and metabolic syndrome in Sprague-Dawley rats. Biomed Res Int, 2014, 1-10. Jameel, F., Phang, M., Wood, L. G., & Garg, M. L. (2014). Acute effects of feeding fructose, glucose and sucrose on blood lipid levels and systemic inflammation. Lipids Health Dis, 13, 195. Jamnik, J., Rehman, S., Blanco Mejia, S., de Souza, R. J., Khan, T. A., et al. (2016). Fructose intake and risk of gout and hyperuricemia: a systematic review and meta-analysis of prospective cohort studies. BMJ Open, 6(10), e013191. Jayalath, V. H., de Souza, R. J., Ha, V., Mirrahimi, A., Blanco-Mejia, S., Di Buono, M., et al. (2015). Sugar-sweetened beverage consumption and incident hypertension: A systematic review and meta-analysis of prospective cohorts. Am J Clin Nutr, 102(4), 914-921. Jayalath, V. H., Sievenpiper, J. L., de Souza, R. J., Ha, V., Mirrahimi, A., Santaren, I. D., et al. (2014). Total fructose intake and risk of hypertension: a systematic review and meta-analysis of prospective cohorts. J Am Coll Nutr, 33(4), 328-339. Jegatheesan, P., & De Bandt, J. P. (2017). Fructose and NAFLD: The Multifaceted Aspects of Fructose Metabolism. Nutrients, 9(3), 1-13.. Jin, R., Welsh, J. A., Le, N. A., Holzberg, J., Sharma, P., Martin, D. R., et al. (2014). Dietary fructose reduction improves markers of cardiovascular disease risk in Hispanic-American adolescents with NAFLD. Nutrients, 6(8), 3187-3201. Johnson, R. J., Perez-Pozo, S. E., Sautin, Y. Y., Manitius, J., Sanchez-Lozada, L. G., Feig, D. I., et al. (2009). Hypothesis: Could excessive fructose intake and uric acid cause type 2 diabetes? Endocr Rev, 30(1), 96-116. Kaneko, C., Ogura, J., Sasaki, S., Okamoto, K., Kobayashi, M., Kuwayama, K., et al. (2017). Fructose suppresses uric acid excretion to the intestinal lumen as a result of the induction of oxidative stress by NADPH oxidase activation. Biochim Biophys Acta, 1861(3), 559-566. Klein, A. V., & Kiat, H. (2015). The mechanisms underlying fructose-induced hypertension: A review. J Hypertens, 33(5), 912-920. Kuzma, J. N., Cromer, G., Hagman, D. K., Breymeyer, K. L., Roth, C. L., Foster-Schubert, K. E., et al. (2016). No differential effect of beverages sweetened with fructose, high-fructose corn syrup, or glucose on systemic or adipose tissue inflammation in normal-weight to obese adults: a randomized controlled trial. Am J Clin Nutr, 104(2), 306-314. Harvey, Richard A.. (2007). Lippincott Biyokimya (Ulukaya E, Çev) Ankara: Nobel Tıp. Leibowitz, A., Rehman, A., Paradis, P., & Schiffrin, E. L. (2013). Role of T regulatory lymphocytes in the pathogenesis of high-fructose diet-induced metabolic syndrome. Hypertension, 61(6), 1316-1321. Liu, H., & Heaney, A. P. (2011). Refined fructose and cancer. Expert Opin Ther Targets, 15(9), 1049-1059. Livesey, G., & Taylor, R. (2008). Fructose consumption and consequences for glycation, plasma triacylglycerol, and body weight: Meta-analyses and meta-regression models of intervention studies. Am J Clin Nutr, 88(5), 1419-1437. Lowndes, J., Sinnett, S., Pardo, S., Nguyen, V. T., Melanson, K. J., Yu, Z., et al. (2014). The effect of normally consumed amounts of sucrose or high fructose corn syrup on lipid profiles, body composition and related parameters in overweight/obese subjects. Nutrients, 6(3), 1128-1144. Madero, M., Arriaga, J. C., Jalal, D., Rivard, C., McFann, K., Perez-Mendez, O., et al. (2011). The effect of two energy-restricted diets, a low-fructose diet versus a moderate natural fructose diet, on weight loss and metabolic syndrome parameters: A randomized controlled trial. Metabolism, 60(11), 1551-1559. Matikainen, N., Soderlund, S., Bjornson, E., Bogl, L. H., Pietilainen, K. H., Hakkarainen, A., et al. (2017). Fructose intervention for 12 weeks does not impair glycemic control or incretin hormone responses during oral glucose or mixed meal tests in obese men. Nutr Metab Cardiovasc Dis, 27(6), 534-542. Nunes, P. M., Wright, A. J., Veltien, A., van Asten, J. J., Tack, C. J., Jones, J. G., et al. (2014). Dietary lipids do not contribute to the higher hepatic triglyceride levels of fructose- compared to glucose-fed mice. FASEB J, 28(5), 1988-1997. Pagidipati, N. J., Hess, C. N., Clare, R. M., Akerblom, A., Tricoci, P., Wojdyla, D., et al. (2017). An examination of the relationship between serum uric acid level, a clinical history of gout, and cardiovascular outcomes among patients with acute coronary syndrome. Am Heart J, 187, 53-61. Panasevich, M. R., Meers, G. M., Linden, M. A., Booth, F. W., Perfield, J. W., 2nd, Fritsche, K. L., et al. (2018). High Fat, High Fructose, High Cholesterol Feeding Causes Severe NASH and Cecal Microbiota Dysbiosis in Juvenile Ossabaw Swine. Am J Physiol Endocrinol Metab, 314(1), E78-E92. Perez-Pozo, S. E., Schold, J., Nakagawa, T., Sanchez-Lozada, L. G., Johnson, R. J., & Lillo, J. L. (2010). Excessive fructose intake induces the features of metabolic syndrome in healthy adult men: Role of uric acid in the hypertensive response. Int J Obes (Lond), 34(3), 454-461. Petta, S., Marchesini, G., Caracausi, L., Macaluso, F. S., Camma, C., Ciminnisi, S., et al. (2013). Industrial, not fruit fructose intake is associated with the severity of liver fibrosis in genotype 1 chronic hepatitis C patients. J Hepatol, 59(6), 1169-1176. Port, A. M., Ruth, M. R., & Istfan, N. W. (2012). Fructose consumption and cancer: Is there a connection? Curr Opin Endocrinol Diabetes Obes, 19(5), 367-374. Rendeiro, C., Masnik, A. M., Mun, J. G., Du, K., Clark, D., Dilger, R. N., et al. (2015). Fructose decreases physical activity and increases body fat without affecting hippocampal neurogenesis and learning relative to an isocaloric glucose diet. Sci Rep, 5, 9589. Rippe, J. M., & Angelopoulos, T. J. (2016). Sugars, obesity, and cardiovascular disease: Results from recent randomized control trials. Eur J Nutr, 55(Suppl 2), 45-53.
  • Sartorelli, D. S., Franco, L. J., Gimeno, S. G., Ferreira, S. R., Cardoso, M. A., & Japanese-Brazilian Diabetes Study, G. (2009). Dietary fructose, fruits, fruit juices and glucose tolerance status in Japanese-Brazilians. Nutr Metab Cardiovasc Dis, 19(2), 77-83. Seraphim, D. C. C., Punaro, G. R., Fernandes, T. O., Ginoza, M., Lopes, G. S., & Higa, E. M. S. (2017). Assessment of fructose overload in the metabolic profile and oxidative/nitrosative stress in the kidney of senescent female rats. Exp Gerontol, 99, 53-60. Shapiro, A., Mu, W., Roncal, C., Cheng, K. Y., Johnson, R. J., & Scarpace, P. J. (2008). Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding. Am J Physiol Regul Integr Comp Physiol, 295(5), R1370-1375. Silbernagel, G., Machann, J., Haring, H. U., Fritsche, A., & Peter, A. (2014). Plasminogen activator inhibitor-1, monocyte chemoattractant protein-1, e-selectin and C-reactive protein levels in response to 4-week very-high-fructose or -glucose diets. Eur J Clin Nutr, 68(1), 97-100. Singh, A. K., Amlal, H., Haas, P. J., Dringenberg, U., Fussell, S., Barone, S. L., et al. (2008). Fructose-induced hypertension: essential role of chloride and fructose absorbing transporters PAT1 and Glut5. Kidney Int, 74(4), 438-447. Stanhope, K. L. (2012). Role of fructose-containing sugars in the epidemics of obesity and metabolic syndrome. Annu Rev Med, 63, 329-343. Stanhope, K. L., Schwarz, J. M., Keim, N. L., Griffen, S. C., Bremer, A. A., Graham, J. L., et al. (2009). Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest, 119(5), 1322-1334. Tappy, L., & Le, K. A. (2010). Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev, 90(1), 23-46. Tappy, L., Le, K. A., Tran, C., & Paquot, N. (2010). Fructose and metabolic diseases: new findings, new questions. Nutrition, 26(11-12), 1044-1049. Tasevska, N., Jiao, L., Cross, A. J., Kipnis, V., Subar, A. F., Hollenbeck, A., et al. (2012). Sugars in diet and risk of cancer in the NIH-AARP Diet and Health Study. Int J Cancer, 130(1), 159-169. Taylor, E. N., & Curhan, G. C. (2008). Fructose consumption and the risk of kidney stones. Kidney Int, 73(2), 207-212. Teff, K. L., Grudziak, J., Townsend, R. R., Dunn, T. N., Grant, R. W., Adams, S. H., et al. (2009). Endocrine and metabolic effects of consuming fructose- and glucose-sweetened beverages with meals in obese men and women: Influence of insulin resistance on plasma triglyceride responses. J Clin Endocrinol Metab, 94(5), 1562-1569. Ter Horst, K. W., Schene, M. R., Holman, R., Romijn, J. A., & Serlie, M. J. (2016). Effect of fructose consumption on insulin sensitivity in nondiabetic subjects: A systematic review and meta-analysis of diet-intervention trials. Am J Clin Nutr, 104(6), 1562-1576. Toop, C. R., & Gentili, S. (2016). Fructose Beverage Consumption Induces a Metabolic Syndrome Phenotype in the Rat: A Systematic Review and Meta-Analysis. Nutrients, 8(9), 1-15.
  • Tran, L. T., MacLeod, K. M., & McNeill, J. H. (2014). Selective alpha(1)-adrenoceptor blockade prevents fructose-induced hypertension. Mol Cell Biochem, 392(1-2), 205-211. Wang, D. D., Sievenpiper, J. L., de Souza, R. J., Chiavaroli, L., Ha, V., Cozma, A. I., et al. (2012). The effects of fructose intake on serum uric acid vary among controlled dietary trials. J Nutr, 142(5), 916-923. Wang, H., Sun, R. Q., Zeng, X. Y., Zhou, X., Li, S., Jo, E., et al. (2015). Restoration of autophagy alleviates hepatic ER stress and impaired insulin signalling transduction in high fructose-fed male mice. Endocrinology, 156(1), 169-181. WHO (2015). Guideline: Sugars intake for adults and children. Geneva: World Health Organization. Zubiria, M. G., Alzamendi, A., Moreno, G., Rey, M. A., Spinedi, E., & Giovambattista, A. (2016). Long-Term Fructose Intake Increases Adipogenic Potential: Evidence of Direct Effects of Fructose on Adipocyte Precursor Cells. Nutrients, 8(4), 198.

Is There an Effect of Dietary Fructose on Development and Prognosis of Chronic Diseases?

Yıl 2019, Cilt: 27 Sayı: 1, 63 - 78, 01.02.2019

Öz

DOI: 10.26650/FNJN346677


Dietary sources of fructose are not only
honey, fruit, sucrose, but also high fructose corn syrup in various foods and
beverages. Total amount of daily fructose intake is rising by especially
increasing use of high fructose corn syrup in the food industry. Fructose can
lead to obesity by contributing to high-energy intake and lipogenesis in the
body. Depending on the source of fructose, dose and duration, it was involved
in de-novo lipid synthesis. Fructose may increase the risk of insulin
resistance, non-alcoholic fatty liver and kidney diseases by affecting blood
glucose and insulin levels. On the other hand, fructose may initiate
inflammatory processes in the organism. In addition to these, fat or salt
consisting typical western type diet with high fructose consumption, can
increase the potential effect of fructose on chronic diseases. As a result,
although it is not fully supported by clinical studies, it is thought that high
amounts of fructose intake may increase the risk of chronic disease shown by
experimental studies. Also it should be noted that beside high fructose,
typical western-style high-fat and high-salt diet may increase the risk of
chronic diseases such as obesity, cardiovascular diseases and worsen metabolic
syndrome parameters. Furthermore, synthetic fructose, is able to cause some
adverse metabolic effects when taken in large amounts; consumption of high
amounts of fructose by fruit or honey these negative effects can be either not
seen or less observed based on the amount.

Kaynakça

  • Aeberli, I., Gerber, P. A., Hochuli, M., Kohler, S., Haile, S. R., Gouni-Berthold, I., et al. (2011). Low to moderate sugar-sweetened beverage consumption impairs glucose and lipid metabolism and promotes inflammation in healthy young men: a randomized controlled trial. Am J Clin Nutr, 94(2), 479-485. Aune, D., Chan, D. S., Vieira, A. R., Navarro Rosenblatt, D. A., Vieira, R., Greenwood, D. C., et al. (2012). Dietary fructose, carbohydrates, glycemic indices and pancreatic cancer risk: a systematic review and meta-analysis of cohort studies. Ann Oncol, 23(10), 2536-2546. Baena, M., Sanguesa, G., Davalos, A., Latasa, M. J., Sala-Vila, A., Sanchez, R. M., et al. (2016). Fructose, but not glucose, impairs insulin signaling in the three major insulin-sensitive tissues. Sci Rep, 6, 1-15. Baena, M., Sanguesa, G., Hutter, N., Beltran, J. M., Sanchez, R. M., Roglans, N., et al. (2017). Liquid fructose in Western-diet-fed mice impairs liver insulin signaling and causes cholesterol and triglyceride loading without changing calorie intake and body weight. J Nutr Biochem, 40, 105-115. Balakumar, M., Raji, L., Prabhu, D., Sathishkumar, C., Prabu, P., Mohan, V., et al. (2016). High-fructose diet is as detrimental as high-fat diet in the induction of insulin resistance and diabetes mediated by hepatic/pancreatic endoplasmic reticulum (ER) stress. Mol Cell Biochem. 423(1-2), 93-104.
  • Biggelaar, L. J., Eussen, S. J., Sep, S. J., Mari, A., Ferrannini, E., Dongen, M. C., et al. (2017). Associations of Dietary Glucose, Fructose, and Sucrose with beta-Cell Function, Insulin Sensitivity, and Type 2 Diabetes in the Maastricht Study. Nutrients, 9(4), pii: E380. Busserolles, J., Gueux, E., Rock, E., Mazur, A., & Rayssiguier, Y. (2002). Substituting honey for refined carbohydrates protects rats from hypertriglyceridemic and prooxidative effects of fructose. J Nutr, 132(11), 3379-3382. Cabral, P. D., Hong, N. J., Hye Khan, M. A., Ortiz, P. A., Beierwaltes, W. H., Imig, J. D., et al. (2014). Fructose stimulates Na/H exchange activity and sensitizes the proximal tubule to angiotensin II. Hypertension, 63(3), e68-73. Cai, W., Li, J., Shi, J., Yang, B., Tang, J., Truby, H., et al. (2017). Acute metabolic and endocrine responses induced by glucose and fructose in healthy young subjects: A double-blinded, randomized, crossover trial. Clin Nutr. 37(2), 459-470. Carran, E. L., White, S. J., Reynolds, A. N., Haszard, J. J., & Venn, B. J. (2016). Acute effect of fructose intake from sugar-sweetened beverages on plasma uric acid: a randomised controlled trial. Eur J Clin Nutr, 70(9), 1034-1038.
  • Catena, C., Cavarape, A., Novello, M., Giacchetti, G., & Sechi, L. A. (2003). Insulin receptors and renal sodium handling in hypertensive fructose-fed rats. Kidney Int, 64(6), 2163-2171. Chiavaroli, L., de Souza, R. J., Ha, V., Cozma, A. I., Mirrahimi, A., Wang, D. D., et al. (2015). Effect of fructose on established lipid targets: A systematic review and meta-analysis of controlled feeding trials. J Am Heart Assoc, 4(9), e001700. Chiu, S., Sievenpiper, J. L., de Souza, R. J., Cozma, A. I., Mirrahimi, A., Carleton, A. J., et al. (2014). Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis of controlled feeding trials. Eur J Clin Nutr, 68(4), 416-423. Chung, M., Ma, J., Patel, K., Berger, S., Lau, J., & Lichtenstein, A. H. (2014). Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: A systematic review and meta-analysis. Am J Clin Nutr, 100(3), 833-849. Coate, K. C., Smith, M. S., Shiota, M., Irimia, J. M., Roach, P. J., Farmer, B., et al. (2013). Hepatic glucose metabolism in late pregnancy: Normal versus high-fat and -fructose diet. Diabetes, 62(3), 753-761. Cozma, A. I., Sievenpiper, J. L., de Souza, R. J., Chiavaroli, L., Ha, V., Wang, D. D., et al. (2012). Effect of fructose on glycemic control in diabetes: a systematic review and meta-analysis of controlled feeding trials. Diabetes Care, 35(7), 1611-1620. Drewnowski, A., & Bellisle, F. (2007). Liquid calories, sugar, and body weight. Am J Clin Nutr, 85(3), 651-661. Dupas, J., Feray, A., Goanvec, C., Guernec, A., Samson, N., Bougaran, P., et al. (2017). Metabolic Syndrome and Hypertension Resulting from Fructose Enriched Diet in Wistar Rats. Biomed Res Int, 2017, 1-10. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA); Scientific Opinion on Dietary Reference Values for carbohydrates and dietary fibre. (2010). EFSA Journal 8(3):1462[77 pp.]. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to fructose and reduction of post-prandial glycaemic responses (ID 558) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. (2011). EFSA Journal, 9(6):2223. [15 pp.]. Fan, X., Liu, H., Liu, M., Wang, Y., Qiu, L., & Cui, Y. (2017). Increased utilization of fructose has a positive effect on the development of breast cancer. Peer J, 5, e3804. Francisqueti, F. V., Santos, K. C., Ferron, A. J., Lo, A. T., Minatel, I. O., Campos, D. H., et al. (2016). Fructose: Toxic effect on cardiorenal risk factors and redox state. SAGE Open Med, 4, 1-6. Fu, Y. C., Yin, S. C., Chi, C. S., Hwang, B., & Hsu, S. L. (2006). Norepinephrine induces apoptosis in neonatal rat endothelial cells via a ROS-dependent JNK activation pathway. Apoptosis, 11(11), 2053-2063. Gallagher, C., Keogh, J. B., Pedersen, E., & Clifton, P. M. (2016). Fructose acute effects on glucose, insulin, and triglyceride after a solid meal compared with sucralose and sucrose in a randomized crossover study. Am J Clin Nutr, 103(6), 1453-1457. Glushakova, O., Kosugi, T., Roncal, C., Mu, W., Heinig, M., Cirillo, P., et al. (2008). Fructose induces the inflammatory molecule ICAM-1 in endothelial cells. J Am Soc Nephrol, 19(9), 1712-1720. Grembecka, M. (2015). Natural sweeteners in a human diet. Rocz Panstw Zakl Hig, 66(3), 195-202. Hacettepe Üniversitesi Beslenme ve Diyetetik Bölümü. (2015). Türkiye’ye Özgü Beslenme Rehberi. T.C. Sağlık Bakanlığı Temel Sağlık Hizmetleri Genel Müdürlüğü, 9-62. Ankara. Hu, Q. H., Wang, C., Li, J. M., Zhang, D. M., & Kong, L. D. (2009). Allopurinol, rutin, and quercetin attenuate hyperuricemia and renal dysfunction in rats induced by fructose intake: renal organic ion transporter involvement. Am J Physiol Renal Physiol, 297(4), F1080-1091. Ibraheem, Z. O., Basir, R., Aljobory, A., Ibrahim, O. E., Alsumaidaee, A., & Yam, M. F. (2014). Impact of gentamicin coadministration along with high fructose feeding on progression of renal failure and metabolic syndrome in Sprague-Dawley rats. Biomed Res Int, 2014, 1-10. Jameel, F., Phang, M., Wood, L. G., & Garg, M. L. (2014). Acute effects of feeding fructose, glucose and sucrose on blood lipid levels and systemic inflammation. Lipids Health Dis, 13, 195. Jamnik, J., Rehman, S., Blanco Mejia, S., de Souza, R. J., Khan, T. A., et al. (2016). Fructose intake and risk of gout and hyperuricemia: a systematic review and meta-analysis of prospective cohort studies. BMJ Open, 6(10), e013191. Jayalath, V. H., de Souza, R. J., Ha, V., Mirrahimi, A., Blanco-Mejia, S., Di Buono, M., et al. (2015). Sugar-sweetened beverage consumption and incident hypertension: A systematic review and meta-analysis of prospective cohorts. Am J Clin Nutr, 102(4), 914-921. Jayalath, V. H., Sievenpiper, J. L., de Souza, R. J., Ha, V., Mirrahimi, A., Santaren, I. D., et al. (2014). Total fructose intake and risk of hypertension: a systematic review and meta-analysis of prospective cohorts. J Am Coll Nutr, 33(4), 328-339. Jegatheesan, P., & De Bandt, J. P. (2017). Fructose and NAFLD: The Multifaceted Aspects of Fructose Metabolism. Nutrients, 9(3), 1-13.. Jin, R., Welsh, J. A., Le, N. A., Holzberg, J., Sharma, P., Martin, D. R., et al. (2014). Dietary fructose reduction improves markers of cardiovascular disease risk in Hispanic-American adolescents with NAFLD. Nutrients, 6(8), 3187-3201. Johnson, R. J., Perez-Pozo, S. E., Sautin, Y. Y., Manitius, J., Sanchez-Lozada, L. G., Feig, D. I., et al. (2009). Hypothesis: Could excessive fructose intake and uric acid cause type 2 diabetes? Endocr Rev, 30(1), 96-116. Kaneko, C., Ogura, J., Sasaki, S., Okamoto, K., Kobayashi, M., Kuwayama, K., et al. (2017). Fructose suppresses uric acid excretion to the intestinal lumen as a result of the induction of oxidative stress by NADPH oxidase activation. Biochim Biophys Acta, 1861(3), 559-566. Klein, A. V., & Kiat, H. (2015). The mechanisms underlying fructose-induced hypertension: A review. J Hypertens, 33(5), 912-920. Kuzma, J. N., Cromer, G., Hagman, D. K., Breymeyer, K. L., Roth, C. L., Foster-Schubert, K. E., et al. (2016). No differential effect of beverages sweetened with fructose, high-fructose corn syrup, or glucose on systemic or adipose tissue inflammation in normal-weight to obese adults: a randomized controlled trial. Am J Clin Nutr, 104(2), 306-314. Harvey, Richard A.. (2007). Lippincott Biyokimya (Ulukaya E, Çev) Ankara: Nobel Tıp. Leibowitz, A., Rehman, A., Paradis, P., & Schiffrin, E. L. (2013). Role of T regulatory lymphocytes in the pathogenesis of high-fructose diet-induced metabolic syndrome. Hypertension, 61(6), 1316-1321. Liu, H., & Heaney, A. P. (2011). Refined fructose and cancer. Expert Opin Ther Targets, 15(9), 1049-1059. Livesey, G., & Taylor, R. (2008). Fructose consumption and consequences for glycation, plasma triacylglycerol, and body weight: Meta-analyses and meta-regression models of intervention studies. Am J Clin Nutr, 88(5), 1419-1437. Lowndes, J., Sinnett, S., Pardo, S., Nguyen, V. T., Melanson, K. J., Yu, Z., et al. (2014). The effect of normally consumed amounts of sucrose or high fructose corn syrup on lipid profiles, body composition and related parameters in overweight/obese subjects. Nutrients, 6(3), 1128-1144. Madero, M., Arriaga, J. C., Jalal, D., Rivard, C., McFann, K., Perez-Mendez, O., et al. (2011). The effect of two energy-restricted diets, a low-fructose diet versus a moderate natural fructose diet, on weight loss and metabolic syndrome parameters: A randomized controlled trial. Metabolism, 60(11), 1551-1559. Matikainen, N., Soderlund, S., Bjornson, E., Bogl, L. H., Pietilainen, K. H., Hakkarainen, A., et al. (2017). Fructose intervention for 12 weeks does not impair glycemic control or incretin hormone responses during oral glucose or mixed meal tests in obese men. Nutr Metab Cardiovasc Dis, 27(6), 534-542. Nunes, P. M., Wright, A. J., Veltien, A., van Asten, J. J., Tack, C. J., Jones, J. G., et al. (2014). Dietary lipids do not contribute to the higher hepatic triglyceride levels of fructose- compared to glucose-fed mice. FASEB J, 28(5), 1988-1997. Pagidipati, N. J., Hess, C. N., Clare, R. M., Akerblom, A., Tricoci, P., Wojdyla, D., et al. (2017). An examination of the relationship between serum uric acid level, a clinical history of gout, and cardiovascular outcomes among patients with acute coronary syndrome. Am Heart J, 187, 53-61. Panasevich, M. R., Meers, G. M., Linden, M. A., Booth, F. W., Perfield, J. W., 2nd, Fritsche, K. L., et al. (2018). High Fat, High Fructose, High Cholesterol Feeding Causes Severe NASH and Cecal Microbiota Dysbiosis in Juvenile Ossabaw Swine. Am J Physiol Endocrinol Metab, 314(1), E78-E92. Perez-Pozo, S. E., Schold, J., Nakagawa, T., Sanchez-Lozada, L. G., Johnson, R. J., & Lillo, J. L. (2010). Excessive fructose intake induces the features of metabolic syndrome in healthy adult men: Role of uric acid in the hypertensive response. Int J Obes (Lond), 34(3), 454-461. Petta, S., Marchesini, G., Caracausi, L., Macaluso, F. S., Camma, C., Ciminnisi, S., et al. (2013). Industrial, not fruit fructose intake is associated with the severity of liver fibrosis in genotype 1 chronic hepatitis C patients. J Hepatol, 59(6), 1169-1176. Port, A. M., Ruth, M. R., & Istfan, N. W. (2012). Fructose consumption and cancer: Is there a connection? Curr Opin Endocrinol Diabetes Obes, 19(5), 367-374. Rendeiro, C., Masnik, A. M., Mun, J. G., Du, K., Clark, D., Dilger, R. N., et al. (2015). Fructose decreases physical activity and increases body fat without affecting hippocampal neurogenesis and learning relative to an isocaloric glucose diet. Sci Rep, 5, 9589. Rippe, J. M., & Angelopoulos, T. J. (2016). Sugars, obesity, and cardiovascular disease: Results from recent randomized control trials. Eur J Nutr, 55(Suppl 2), 45-53.
  • Sartorelli, D. S., Franco, L. J., Gimeno, S. G., Ferreira, S. R., Cardoso, M. A., & Japanese-Brazilian Diabetes Study, G. (2009). Dietary fructose, fruits, fruit juices and glucose tolerance status in Japanese-Brazilians. Nutr Metab Cardiovasc Dis, 19(2), 77-83. Seraphim, D. C. C., Punaro, G. R., Fernandes, T. O., Ginoza, M., Lopes, G. S., & Higa, E. M. S. (2017). Assessment of fructose overload in the metabolic profile and oxidative/nitrosative stress in the kidney of senescent female rats. Exp Gerontol, 99, 53-60. Shapiro, A., Mu, W., Roncal, C., Cheng, K. Y., Johnson, R. J., & Scarpace, P. J. (2008). Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high-fat feeding. Am J Physiol Regul Integr Comp Physiol, 295(5), R1370-1375. Silbernagel, G., Machann, J., Haring, H. U., Fritsche, A., & Peter, A. (2014). Plasminogen activator inhibitor-1, monocyte chemoattractant protein-1, e-selectin and C-reactive protein levels in response to 4-week very-high-fructose or -glucose diets. Eur J Clin Nutr, 68(1), 97-100. Singh, A. K., Amlal, H., Haas, P. J., Dringenberg, U., Fussell, S., Barone, S. L., et al. (2008). Fructose-induced hypertension: essential role of chloride and fructose absorbing transporters PAT1 and Glut5. Kidney Int, 74(4), 438-447. Stanhope, K. L. (2012). Role of fructose-containing sugars in the epidemics of obesity and metabolic syndrome. Annu Rev Med, 63, 329-343. Stanhope, K. L., Schwarz, J. M., Keim, N. L., Griffen, S. C., Bremer, A. A., Graham, J. L., et al. (2009). Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest, 119(5), 1322-1334. Tappy, L., & Le, K. A. (2010). Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev, 90(1), 23-46. Tappy, L., Le, K. A., Tran, C., & Paquot, N. (2010). Fructose and metabolic diseases: new findings, new questions. Nutrition, 26(11-12), 1044-1049. Tasevska, N., Jiao, L., Cross, A. J., Kipnis, V., Subar, A. F., Hollenbeck, A., et al. (2012). Sugars in diet and risk of cancer in the NIH-AARP Diet and Health Study. Int J Cancer, 130(1), 159-169. Taylor, E. N., & Curhan, G. C. (2008). Fructose consumption and the risk of kidney stones. Kidney Int, 73(2), 207-212. Teff, K. L., Grudziak, J., Townsend, R. R., Dunn, T. N., Grant, R. W., Adams, S. H., et al. (2009). Endocrine and metabolic effects of consuming fructose- and glucose-sweetened beverages with meals in obese men and women: Influence of insulin resistance on plasma triglyceride responses. J Clin Endocrinol Metab, 94(5), 1562-1569. Ter Horst, K. W., Schene, M. R., Holman, R., Romijn, J. A., & Serlie, M. J. (2016). Effect of fructose consumption on insulin sensitivity in nondiabetic subjects: A systematic review and meta-analysis of diet-intervention trials. Am J Clin Nutr, 104(6), 1562-1576. Toop, C. R., & Gentili, S. (2016). Fructose Beverage Consumption Induces a Metabolic Syndrome Phenotype in the Rat: A Systematic Review and Meta-Analysis. Nutrients, 8(9), 1-15.
  • Tran, L. T., MacLeod, K. M., & McNeill, J. H. (2014). Selective alpha(1)-adrenoceptor blockade prevents fructose-induced hypertension. Mol Cell Biochem, 392(1-2), 205-211. Wang, D. D., Sievenpiper, J. L., de Souza, R. J., Chiavaroli, L., Ha, V., Cozma, A. I., et al. (2012). The effects of fructose intake on serum uric acid vary among controlled dietary trials. J Nutr, 142(5), 916-923. Wang, H., Sun, R. Q., Zeng, X. Y., Zhou, X., Li, S., Jo, E., et al. (2015). Restoration of autophagy alleviates hepatic ER stress and impaired insulin signalling transduction in high fructose-fed male mice. Endocrinology, 156(1), 169-181. WHO (2015). Guideline: Sugars intake for adults and children. Geneva: World Health Organization. Zubiria, M. G., Alzamendi, A., Moreno, G., Rey, M. A., Spinedi, E., & Giovambattista, A. (2016). Long-Term Fructose Intake Increases Adipogenic Potential: Evidence of Direct Effects of Fructose on Adipocyte Precursor Cells. Nutrients, 8(4), 198.
Toplam 5 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Derlemeler
Yazarlar

Armağan Aytuğ Yürük Bu kişi benim

Reyhan Nergiz Ünal Bu kişi benim

Yayımlanma Tarihi 1 Şubat 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 27 Sayı: 1

Kaynak Göster

APA Yürük, A. A., & Ünal, R. N. (2019). Is There an Effect of Dietary Fructose on Development and Prognosis of Chronic Diseases?. Florence Nightingale Journal of Nursing, 27(1), 63-78.
AMA Yürük AA, Ünal RN. Is There an Effect of Dietary Fructose on Development and Prognosis of Chronic Diseases?. Florence Nightingale Journal of Nursing. Şubat 2019;27(1):63-78.
Chicago Yürük, Armağan Aytuğ, ve Reyhan Nergiz Ünal. “Is There an Effect of Dietary Fructose on Development and Prognosis of Chronic Diseases?”. Florence Nightingale Journal of Nursing 27, sy. 1 (Şubat 2019): 63-78.
EndNote Yürük AA, Ünal RN (01 Şubat 2019) Is There an Effect of Dietary Fructose on Development and Prognosis of Chronic Diseases?. Florence Nightingale Journal of Nursing 27 1 63–78.
IEEE A. A. Yürük ve R. N. Ünal, “Is There an Effect of Dietary Fructose on Development and Prognosis of Chronic Diseases?”, Florence Nightingale Journal of Nursing, c. 27, sy. 1, ss. 63–78, 2019.
ISNAD Yürük, Armağan Aytuğ - Ünal, Reyhan Nergiz. “Is There an Effect of Dietary Fructose on Development and Prognosis of Chronic Diseases?”. Florence Nightingale Journal of Nursing 27/1 (Şubat 2019), 63-78.
JAMA Yürük AA, Ünal RN. Is There an Effect of Dietary Fructose on Development and Prognosis of Chronic Diseases?. Florence Nightingale Journal of Nursing. 2019;27:63–78.
MLA Yürük, Armağan Aytuğ ve Reyhan Nergiz Ünal. “Is There an Effect of Dietary Fructose on Development and Prognosis of Chronic Diseases?”. Florence Nightingale Journal of Nursing, c. 27, sy. 1, 2019, ss. 63-78.
Vancouver Yürük AA, Ünal RN. Is There an Effect of Dietary Fructose on Development and Prognosis of Chronic Diseases?. Florence Nightingale Journal of Nursing. 2019;27(1):63-78.