Year 2018, Volume 68, Issue 2, Pages 136 - 140 2018-07-20

Comparing Shannon entropy with Deng entropy and improved Deng entropy for measuring biodiversity when a priori data is not clear
Öncü verinin belirsizliği durumunda biyoçeşitliğin belirlenmesinde Shannon entropisinin Deng entropisi ve geliştirilmiş Deng Entropisi ile karşılaştırılması

Kürşad Özkan [1]

53 162

DOI: 10.26650/forestist.2018.340634

The various diversity measures used to measure biodiversity include the Margalef index, McIntosh index, Simpson index, Brillouin index, and Shannon entropy. Of these measures, the most popular is Shannon entropy (H). In this study, with respect to measuring biodiversity, we compare Shannon entropy-the essential aspect of information theory-with the Deng and improved Deng entropies, as proposed within the framework of the Dempster–Shafer evidential theory. To do so, we used a hypothetical dataset of three complexes. Based on this hypothetic data, ecologically speaking, we obtained the most reasonable result from the improved Deng entropy. There are two reasons for this result: 1) Mass functions cannot be used when computing the Shannon entropy, and 2) Deng entropy does not take into consideration the scale of the frame of discernment.

DOI: 10.26650/forestist.2018.340634

Biyolojik çeşitliliğin belirlenmesinde Margalef indeksi, McIntosh indeksi, Simpson indeksi, Brillouin indeksi ve Shannon entropisi gibi birçok çeşitlilik indisi kullanılmaktadırlar. Bu indisler arasındaki en popular olanı Shannon entropisidir. Bu çalışma biyolojik çeşitliğin ölçümüne yönelik olarak bilgi teorisinin temel eşitliği olan Shannon entropis ile Demster-Shafer Delil Teorisi’nin ölçümlerinden olan Deng entropisi ve Geliştirilmiş Deng entropisini karşılaştırmak için gerçekleştirilmiştir. Çalışmada 3 kompleksten oluşan hipotetik bir veri kullanılmıştır. Kullanılan hipotetik veri ile gerçekleştirilen hesaplamaların sonucunda, ekolojik açıdan en makul sonuçlar Geliştirilmiş Deng entropisi ile elde edilmiştir. Bu sonucun iki sebebi bulunmaktadır. Birincisi Shannon entropisi hesaplanırken kütle fonksiyonları kullanılamamaktadır. İkincisi ise Deng entropisinin sezgisel yapı ölçeğini dikkate almamasıdır.

  • Chin, K.S., Fu, C., Wang, Y., 2015. A method of determining attribute weights in evidential reasoning approach based on incompatibility among attributes. Computers and Industrial Engineering vol. 87, pp. 150-162.
  • Deng, Y., 2016. Deng entropy. Chaos, Solitions and Fractals vol. 91, pp. 549-553.
  • Doyle, L.R., 2009. Quantification of Information in a One-Way Plant to Animal Communication System. Entropy 11, pp. 431-442.
  • Du, W.S., Hu, B.Q., 2016. Attribute reduction in ordered decision tables via evidence theory. Information Science vol. 364-365, pp. 91-110.
  • Dubois, D., Prade, H., 1985. A note on measures of specificity for fuzzy sets. International Journal of General Systems vol. 10, no. 4, pp. 279-283.
  • Fu, C., Wang, Y., 2015. An interval difference based evidential reasoning approach with unknown attribute weights and utilities of assessment grades. Computers and Industrial Engineering vol.81, pp. 109-117.
  • George, T., Pal, N.R., 1996. Quantification of conflict in Dempster-Shafer framework: a new approach. International Journal of General Systems vol. 24, no. 4, pp. 407-423.
  • Gorelick, R., 2006. Combining richness and abundance into a single diversity index using matrix analogues of Shannon’s and Simpson’s indices. Ecography 29, 525-530.
  • Jiang, W., Xie, C., Wei, B., Zhou, D., 2016a. A Improved method for risk evaluation in failure models and effects analysis of aircraft turbine rotor blades. Advances in Mechanical Enginnering vol. 8, no. 4, pp. 1-16.
  • Jiang, W, Wei, B, Xie, C, Zhou, D., 2016b. An evidential sensor fusion method in fault diagnosis. Advances in Mechanic Engineering vol 8(3), pp. 1-7.
  • Jiang, W., Wei, B., Qin, X., Zhan, J., Tang, Y., 2016c. Sensor data fusion based on a new conflict measure. Mathematical Problems in Engineering vol. 2016, p.11.
  • Jiang, W., Xie, C., Zhuang, M., Shou, Y., Tang, Y., 2016d. Sensor data fusion with z-numbers and its application in fault diagnosis. Sensor vol. 16, no. 9, p.1509. Jost, L., 2006. Entropy and diversity. Oikos 113, 363-375.
  • Klir, G.J., Ramer, A., 1990. Uncertainly in the Dempster-Shafer theory: a critical re-examination. International Journal of General Systems vol. 18, no.2, pp. 155-166.
  • Liu, Z., Pan, Q., Dezert, J., 2013. A new belief-based K-nearest neighbor classification method. Pattern Recognition vol. 46, no.3, pp. 834-844.
  • Liu, Z.G., Pan, Q., Dezert, J., Martin, A. 2016. Adaptive imputation of missing values for incomplete pattern classification. Pattern Recognition vol. 52, pp. 85-95.
  • Ma, J., Liu, W., Benferhat, S., 2015. A belief revision framework for revising epistemic states with partial epistemic states. International Journal of Approximate Reasoning 59; 20-40.
  • Özkan, K., 2016a. Application of Information Theory for an Entropic Gradient of Ecological Sites. Entropy 18: 340.
  • Özkan, K., 2016b. Biyolojik Çeşitlilik Bileşenleri (α, ß, γ) Nasıl Ölçülür. Süleyman Demirel Üniversitesi, Orman Fakültesi Yayın No: 98, ISBN: 976-9944-452-89-2, Isparta, 142 s.
  • Robinson, D.W., 2008. Entropy and uncertainty. Entropy 10(4): 493-506.
  • Shannon, C.E., 1948. A mathematical theory of communication. Bell Syst Tech J 27: 379-423.
  • Song, Y., Wang, X., Lei, L., Yue, S., 2016. Uncertainly measure for interval-valued belief structures. Measurement vol. 80, pp. 241-250.
  • Song, Y., Wang, X., Zhang, H., 2015. A distance measure between intuitionistic fuzzy belief functions. Knowlegde-Based Systems vol. 86, pp. 288-298.
  • Su, X., Deng, Y., Mahadevan, S., Bao, Q., 2012. An improved method for risk evaluation in failure models and effects analysis of aircraft engine rotor blades. Engineering Failure Analysis vol.26, pp.164-174.
  • Tang, Y., Zhou, D., Jiang, W., 2016. A new fuzzy-evidential controller for stabilization of the planar inverted pendulum systems. PLos ONE vol. 11, no. 8.
  • Wang, Y.M., Elhag, T.M.S., 2007. A comparison of neural network, evidential reasoning and multiple regression analysis in modelling bridge risks. Expert Systems with Applications vol. 32, no. 2, pp.336-348.
  • Wang, Y.M., Yang, J.B., Xu, D.L., Chin, K.S., 2009. Consumer preference prediction by using a hybrid evidential reasoning and belief rule-based methodology. Expert Systems with Applications vol. 36, no. 4, pp. 8421-8430.
  • Yager, R.R., 1983. Entropy and specificity in a mathematical theory of evidence. International Journal of General Systems vol. 9, no. 4, pp. 249-260.
  • Yager, R.R., Filev, D.P., 1995. Including probabilistic uncertainly in fuzzy logic controller modeling using dempster-shafer theory. IEEE Transactions on Systems, Man, and Cybernetics vol. 25, no. 8, pp.1221-1230.
  • Yang, Y., Han, D., 2016. A new distance-based total uncertainly measure in the theory of belief functions. Knowledge-Based Systems vol. 94, pp.114-123.
  • Yuan, K., Xiao, F., Fei, L., Kang, B., Deng, Y., 2016. Modelling sensor reliability in fault diagnosis based on evidence theory. Sensor vol. 16, no. 1, article 113.
  • Zhou, K., Martin, A., Pan, Q., Liu, Z.G., 2015. Medial evindential c-means algorithm and its application to community detection. Knowlegde-Based Systems vol. 74, pp. 69-88.
  • Zhou, D., Tang, Y., Jiang, W., 2017. A Improved belief entropy in Dempster-Shafer framework. PLoS ONE 12(5): e0176832.
Primary Language en
Journal Section Articles
Authors

Author: Kürşad Özkan (Primary Author)
Institution: Department of Soil Science and Ecology, Süleyman Demirel University, Faculty of Forestry, 32200, Isparta, Turkey

Dates

Publication Date: July 20, 2018

Bibtex @short communication { forestist461835, journal = {FORESTIST}, issn = {}, eissn = {2602-4039}, address = {İstanbul University-Cerrahpaşa}, year = {2018}, volume = {68}, pages = {136 - 140}, doi = {}, title = {Comparing Shannon entropy with Deng entropy and improved Deng entropy for measuring biodiversity when a priori data is not clear}, key = {cite}, author = {Özkan, Kürşad} }
APA Özkan, K . (2018). Comparing Shannon entropy with Deng entropy and improved Deng entropy for measuring biodiversity when a priori data is not clear. FORESTIST, 68 (2), 136-140. Retrieved from http://dergipark.org.tr/forestist/issue/39234/461835
MLA Özkan, K . "Comparing Shannon entropy with Deng entropy and improved Deng entropy for measuring biodiversity when a priori data is not clear". FORESTIST 68 (2018): 136-140 <http://dergipark.org.tr/forestist/issue/39234/461835>
Chicago Özkan, K . "Comparing Shannon entropy with Deng entropy and improved Deng entropy for measuring biodiversity when a priori data is not clear". FORESTIST 68 (2018): 136-140
RIS TY - JOUR T1 - Comparing Shannon entropy with Deng entropy and improved Deng entropy for measuring biodiversity when a priori data is not clear AU - Kürşad Özkan Y1 - 2018 PY - 2018 N1 - DO - T2 - FORESTIST JF - Journal JO - JOR SP - 136 EP - 140 VL - 68 IS - 2 SN - -2602-4039 M3 - UR - Y2 - 2018 ER -
EndNote %0 FORESTIST Comparing Shannon entropy with Deng entropy and improved Deng entropy for measuring biodiversity when a priori data is not clear %A Kürşad Özkan %T Comparing Shannon entropy with Deng entropy and improved Deng entropy for measuring biodiversity when a priori data is not clear %D 2018 %J FORESTIST %P -2602-4039 %V 68 %N 2 %R %U
ISNAD Özkan, Kürşad . "Comparing Shannon entropy with Deng entropy and improved Deng entropy for measuring biodiversity when a priori data is not clear". FORESTIST 68 / 2 (July 2018): 136-140.
AMA Özkan K . Comparing Shannon entropy with Deng entropy and improved Deng entropy for measuring biodiversity when a priori data is not clear. FORESTIST. 2018; 68(2): 136-140.
Vancouver Özkan K . Comparing Shannon entropy with Deng entropy and improved Deng entropy for measuring biodiversity when a priori data is not clear. FORESTIST. 2018; 68(2): 140-136.