Year 2019, Volume 32, Issue 2, Pages 637 - 647 2019-06-01

Faber Polynomial Coefficient Estimates for Analytic Bi-Close-to-Convex Functions Defined by Subordination

Ebrahim Analouei Adegani [1] , Ahmad ZIREH [2] , Mostafa JAFARI [3]

37 64

In this work, the Faber polynomial expansions and a different method were employed to estimate the  coefficients of a subclass of bi-close-to-convex functions, which is introduced by subordination concept in the open unit disk. Further, we generalize some of the previous outcomes. 

Bi-univalent functions, Bi-close-to-convex functions, Coefficient estimates, Faber polynomial, Subordination
  • Reference1 H. Airault and A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math., 130 (2006) 179-222.
  • Reference2 H. Airault and J. Ren, An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., 126 (2002) 343-367.
  • Reference3 H. Airault and A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math., 130 (2006) 179-222.
  • Reference4 R. M. Ali, S. K. Lee, V. Ravichandran and S. Subramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25 (2012) 344-351.
  • Reference5 S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Acad. Sci. Paris, 352 (2014) 479-484.
  • Reference6 P. L. Duren, Univalent Functions, Springer-Verlag, New York, Berlin, 1983.
  • Reference7 G. Faber, Uber polynomische Entwickelungen, Math. Ann., 57 (1903) 389-408.
  • Reference8 B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011) 1569-1573.
  • Reference9 S. G. Hamidi and J. M. Jahangiri, Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Math. Acad. Sci. Paris, 352 (2014) 17-20..
  • Reference10 S. G. Hamidi and J. M. Jahangiri, Faber polynomial coefficients of bi-subordinate functions, C. R. Math. Acad. Sci. Paris, 354 (2016) 365-370.
  • Reference11 S. G. Hamidi, S. A. Halim and J. M. Jahangiri, Coefficient estimates for a class of meromorphic bi-univalent functions, C. R. Math. Acad. Sci. Paris, 351 (2013) 349-352.
  • Reference12 W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J., 1 (1952) 169–185.
  • Reference13 M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967) 63-68.
  • Reference14 W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Tianjin, 1992, 157–169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1994.
  • Reference15 H. M. Srivastava, S. S. Eker and R. M. Ali, Coeffcient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29 (2015) 1839-1845
  • Reference16 H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett., 23 (2010) 1188-1192.
  • Reference17 S. Sivasubramanian, R. Sivakumar, S. Kanas and Seong-A Kim, Verification of Brannan and Clunie's conjecture for certain subclasses of bi univalent functions, Ann. Pol. Math., 113 (2015) 295-303.
  • Reference18 P. G. Todorov, On the Faber polynomials of the univalent functions of class, J. Math. Anal. Appl., 162 (1991) 268-276.
  • Reference19 A. Zireh and E. Analouei Adegani, Coefficient estimates for a subclass of analytic and bi-univalent functions, Bull. Iranian Math. Soc., 42 (2016) 881-889.
  • Reference20 A. Zireh, E. Analouei Adegani and S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination, Bull. Belg. Math. Soc. Simon Stevin, 23 (2016) 487-504.
Primary Language en
Subjects Engineering
Journal Section Mathematics
Authors

Author: Ebrahim Analouei Adegani (Primary Author)
Institution: Shahrood University of Technology
Country: Iran


Author: Ahmad ZIREH

Author: Mostafa JAFARI

Dates

Publication Date: June 1, 2019

Bibtex @research article { gujs370554, journal = {GAZI UNIVERSITY JOURNAL OF SCIENCE}, issn = {}, eissn = {2147-1762}, address = {Gazi University}, year = {2019}, volume = {32}, pages = {637 - 647}, doi = {}, title = {Faber Polynomial Coefficient Estimates for Analytic Bi-Close-to-Convex Functions Defined by Subordination}, key = {cite}, author = {Analouei Adegani, Ebrahim and ZIREH, Ahmad and JAFARI, Mostafa} }
APA Analouei Adegani, E , ZIREH, A , JAFARI, M . (2019). Faber Polynomial Coefficient Estimates for Analytic Bi-Close-to-Convex Functions Defined by Subordination. GAZI UNIVERSITY JOURNAL OF SCIENCE, 32 (2), 637-647. Retrieved from http://dergipark.org.tr/gujs/issue/45480/370554
MLA Analouei Adegani, E , ZIREH, A , JAFARI, M . "Faber Polynomial Coefficient Estimates for Analytic Bi-Close-to-Convex Functions Defined by Subordination". GAZI UNIVERSITY JOURNAL OF SCIENCE 32 (2019): 637-647 <http://dergipark.org.tr/gujs/issue/45480/370554>
Chicago Analouei Adegani, E , ZIREH, A , JAFARI, M . "Faber Polynomial Coefficient Estimates for Analytic Bi-Close-to-Convex Functions Defined by Subordination". GAZI UNIVERSITY JOURNAL OF SCIENCE 32 (2019): 637-647
RIS TY - JOUR T1 - Faber Polynomial Coefficient Estimates for Analytic Bi-Close-to-Convex Functions Defined by Subordination AU - Ebrahim Analouei Adegani , Ahmad ZIREH , Mostafa JAFARI Y1 - 2019 PY - 2019 N1 - DO - T2 - GAZI UNIVERSITY JOURNAL OF SCIENCE JF - Journal JO - JOR SP - 637 EP - 647 VL - 32 IS - 2 SN - -2147-1762 M3 - UR - Y2 - 2019 ER -
EndNote %0 GAZI UNIVERSITY JOURNAL OF SCIENCE Faber Polynomial Coefficient Estimates for Analytic Bi-Close-to-Convex Functions Defined by Subordination %A Ebrahim Analouei Adegani , Ahmad ZIREH , Mostafa JAFARI %T Faber Polynomial Coefficient Estimates for Analytic Bi-Close-to-Convex Functions Defined by Subordination %D 2019 %J GAZI UNIVERSITY JOURNAL OF SCIENCE %P -2147-1762 %V 32 %N 2 %R %U
ISNAD Analouei Adegani, Ebrahim , ZIREH, Ahmad , JAFARI, Mostafa . "Faber Polynomial Coefficient Estimates for Analytic Bi-Close-to-Convex Functions Defined by Subordination". GAZI UNIVERSITY JOURNAL OF SCIENCE 32 / 2 (June 2019): 637-647.
AMA Analouei Adegani E , ZIREH A , JAFARI M . Faber Polynomial Coefficient Estimates for Analytic Bi-Close-to-Convex Functions Defined by Subordination. GAZI UNIVERSITY JOURNAL OF SCIENCE. 2019; 32(2): 637-647.
Vancouver Analouei Adegani E , ZIREH A , JAFARI M . Faber Polynomial Coefficient Estimates for Analytic Bi-Close-to-Convex Functions Defined by Subordination. GAZI UNIVERSITY JOURNAL OF SCIENCE. 2019; 32(2): 647-637.