Loading [a11y]/accessibility-menu.js
Research Article
BibTex RIS Cite
Year 2019, Volume: 3 Issue: 1, 20 - 25, 15.04.2019

Abstract

References

  • 1. Shimomura, O., The discovery of aequorin and green fluorescent protein. Journal of Microscopy, 2005. 217: p. 3–15.
  • 2. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., Prasher, D.C., Green fluorescent protein as a marker for gene expression. Science, 1994. 263(5148): p. 802–805.
  • 3. Chudakov, D.M., Matz, M.V., Lunyakov, S., Lunyakov, K.A., Fluorescent proteins and their applications in imaging living cells and tissues. Physiological Reviews, 2010. 90(3): p.1103–1163.
  • 4. Shaner, N.C., Patterson, G.H., Davidson, M.W., Advances in fluorescent protein technology. Journal of Cell Science, 2007. 120: p. 4247–4260.
  • 5. Haddock, S.H., Mastoianni, N., Christianson, L.M., A photoactivatable green-fluorescent protein from the phylu. Ctenophora. Proceedings Biological Sciences, 2010. 277: p. 1155–1160.
  • 6. Chudakov, D.M., Belousov, V.V., Zaraisky, A.G., Novoselov, V.V., Staroverov, D.B., Zorov, D.B., Lukyanov, S., Lukyanov, K.A., Kindling fluorescent proteins for precise in vivo photolabeling. Nature Biotechnology, 2003. 21(2): p. 191–194.
  • 7. Shemiakina, I.I., Ermakova, G.V., Cranfill, P.J., Baird, M.A., Evans, R.A., Souslova, E.A, Staroverov, D.B., Gorokhovatsky, A.Y., Putintseva, E.V., Gorodnicheva, T.V., Chepurnykh, T.V, Strukova, L., Lukyanov, S., Zaraisky, A.G., Davidson, M.W., Chudakov, D.M., Shcherbo, D., A monomeric red fluorescent protein with low cytotoxicity. Nature Communications, 2012. 3(1): p. 1204.
  • 8. Campbell, R.E., Tour, O., Palmer, A.E., Steinbach, P.A., Baird, G.S., Zacharias, D.A., Tsien, R.Y., A monomeric red fluorescent protein. Proceedings of the National. Academy of Sciences, 2002. 99(12): p. 7877–7882.
  • 9. Shen, Y., Lai, T., Campbell, R.E., Red fluorescent proteins (RFPs) and RFP-based biosensors for neuronal imaging applications. Neurophotonics, 2015. 2(3): p. 031203.
  • 10. Bin, W., Yan, C., Joachim, D.M., Fluorescence fluctuation spectroscopy of mCherry in living cells. Biophysical Journal, 2009. 96(6): p. 2391–2404.
  • 11. Shaner, N.C., Campbell R.E., Steinbach P.A., Giepmans B.N., Palmer A.E., Tsien R.Y., Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnology, 2004. 22(12): p. 1567–1572.
  • 12. Ransom, E.M., Ellermeier, C.D., Weiss, D.S., Use of mCherry red fluorescent protein for studies of protein localization and gene expression in Clostridium difficile. Applied and Environmental Microbiology, 2015. 81(5): p. 1652–1660.
  • 13. Lee, You-Jin, Jung K.-H., Modulation of the tendency towards inclusion body formation of recombinant protein by the addition of glucose in the araBAD promoter system of Escherichia coli. Journal of Microbiology and Biotechnology, 2007. 17(11): p. 1898–1903.
  • 14. Guzman, L.-M., Belin, D., Carson, M.J., Beckwith, J., Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. Journal of Bacteriology, 1995. 177(14), p. 4121-4130.
  • 15. Newman, J.R., Fuqua C., Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene, 1999. 227: p. 197-203.
  • 16. Patkar, A., Vijayasankaran, N., Urry, D.W., Srienc F., Flow cytometer as a useful tool for process development: Rapid evaluation of expression systems. Journal of Bacteriology, 2002. 93(3): p. 217-229.
  • 17. Boström, M., Markland, K., Sandén, A.M., Hedhammar, M., Hober, S., Larsson, G., Effect of substrate feed rate on recombinant protein secretion, degradation and inclusion body formation in Escherichia coli. Applied Microbiology and Biotechnology, 2005. 68(1): p. 82-90.
  • 18. Sandén, A.M., Boström, M., Markland, K., Larsson, G., Solubility and proteolysis of the Zb-MalE and Zb-MalE31 proteins during overproduction in Escherichia coli. Biotechnology and Bioengineering, 2005. 90(2): p. 239-247.
  • 19. Greefield, L., Boone, T., Wilcox, G., DNA sequence of the araBAD promoter in Escherichia coli B/r. Proceedings of the National Academy of Sciences, 1978. 75(10): p. 4724-4728.
  • 20. Siegele, D.A., Hu, J.C., Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proceedings of the National Academy of Sciences, 1997. 94(15): p. 8168–8172.
  • 21. Khlebnikov, A., Risa, Ø, Skaug, T., Carrier, T., Keasling, J.D., Regulatable arabinose-inducible gene expression system with consistent control in all cells of a culture. Journal of Bacteriology, 2007. 182(24): p. 7029-7034.
  • 22. Chae H.J., Delisa M.P., Cha H.J., Weigand W.A., Rao G., Bentley W.E., Framework for online optimization of recombinant protein expression in high-cell-density Escherichia coli cultures using GFP-fusion monitoring. Biotechnology and Bioengineering, 2000. 69(3): p. 275-285.
  • 23. Lu, C., Albano, C.R., Bentley W.E., Rao, G., Differential rates of gene expression monitored by green fluorescent protein. Biotechnology and Bioengineering, 2002. 79(4): p. 429-437.
  • 24. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970. 227(5259): p. 680-685.
  • 25. Sarabipour, S., King, C., Hristova, K., Uninduced high-yield bacterial expression of fluorescent proteins. Analytical Biochemistry, 2017. 449(1): p. 155–157.
  • 26. Demain, A.L., Vaishnav, P., Production of recombinant proteins by microbes and higher organisms. Biotechnology Advances, 2009. 27(3): p. 297-306.
  • 27. Shaner, N.C., Steinbach, P.A., Tsien, R.Y., A guide to choosing fluorescent proteins. Nature Methods, 2005. 2(12): p. 905–909.

Production of red fluorescent protein (mCherry) in an inducible E. coli expression system in a bioreactor, purification and characterization

Year 2019, Volume: 3 Issue: 1, 20 - 25, 15.04.2019

Abstract

New and improved genetic
engineered variants of fluorescent proteins (FPs)
have become useful tools for bioimaging in biomedical
researches. Red fluorescent proteins (RFPs) first derived from the sea anemone Discosoma show high performance in vivo labeling and imaging. mCherry is
a member of RFPs which has very high
photostability, resistant to photo bleaching and rapid maturation. These
advantages ensure that
mCherry
can be successfully fused to many proteins and widely used for quantitative
imaging techniques. In this study, the constructed recombinant plasmid
pBADCherry was expressed in Escherichia
coli
BL21(AI) then culture conditions, inducer concentration and induction
time were optimized. Results of
sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
analysis demonstrated that 5 hours induction at
0.04%
of arabinose concentration was optimal for the highest mCherry yield. The expression of hexa histidine-tagged
(6xHis) recombinant mCherry was induced by arabinose and purification performed
using nickel (Ni2+) affinity chromatography. High throughput
expression of 81 mg fluorescent protein from a liter of E. coli culture carried out in bioreactor.

References

  • 1. Shimomura, O., The discovery of aequorin and green fluorescent protein. Journal of Microscopy, 2005. 217: p. 3–15.
  • 2. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., Prasher, D.C., Green fluorescent protein as a marker for gene expression. Science, 1994. 263(5148): p. 802–805.
  • 3. Chudakov, D.M., Matz, M.V., Lunyakov, S., Lunyakov, K.A., Fluorescent proteins and their applications in imaging living cells and tissues. Physiological Reviews, 2010. 90(3): p.1103–1163.
  • 4. Shaner, N.C., Patterson, G.H., Davidson, M.W., Advances in fluorescent protein technology. Journal of Cell Science, 2007. 120: p. 4247–4260.
  • 5. Haddock, S.H., Mastoianni, N., Christianson, L.M., A photoactivatable green-fluorescent protein from the phylu. Ctenophora. Proceedings Biological Sciences, 2010. 277: p. 1155–1160.
  • 6. Chudakov, D.M., Belousov, V.V., Zaraisky, A.G., Novoselov, V.V., Staroverov, D.B., Zorov, D.B., Lukyanov, S., Lukyanov, K.A., Kindling fluorescent proteins for precise in vivo photolabeling. Nature Biotechnology, 2003. 21(2): p. 191–194.
  • 7. Shemiakina, I.I., Ermakova, G.V., Cranfill, P.J., Baird, M.A., Evans, R.A., Souslova, E.A, Staroverov, D.B., Gorokhovatsky, A.Y., Putintseva, E.V., Gorodnicheva, T.V., Chepurnykh, T.V, Strukova, L., Lukyanov, S., Zaraisky, A.G., Davidson, M.W., Chudakov, D.M., Shcherbo, D., A monomeric red fluorescent protein with low cytotoxicity. Nature Communications, 2012. 3(1): p. 1204.
  • 8. Campbell, R.E., Tour, O., Palmer, A.E., Steinbach, P.A., Baird, G.S., Zacharias, D.A., Tsien, R.Y., A monomeric red fluorescent protein. Proceedings of the National. Academy of Sciences, 2002. 99(12): p. 7877–7882.
  • 9. Shen, Y., Lai, T., Campbell, R.E., Red fluorescent proteins (RFPs) and RFP-based biosensors for neuronal imaging applications. Neurophotonics, 2015. 2(3): p. 031203.
  • 10. Bin, W., Yan, C., Joachim, D.M., Fluorescence fluctuation spectroscopy of mCherry in living cells. Biophysical Journal, 2009. 96(6): p. 2391–2404.
  • 11. Shaner, N.C., Campbell R.E., Steinbach P.A., Giepmans B.N., Palmer A.E., Tsien R.Y., Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnology, 2004. 22(12): p. 1567–1572.
  • 12. Ransom, E.M., Ellermeier, C.D., Weiss, D.S., Use of mCherry red fluorescent protein for studies of protein localization and gene expression in Clostridium difficile. Applied and Environmental Microbiology, 2015. 81(5): p. 1652–1660.
  • 13. Lee, You-Jin, Jung K.-H., Modulation of the tendency towards inclusion body formation of recombinant protein by the addition of glucose in the araBAD promoter system of Escherichia coli. Journal of Microbiology and Biotechnology, 2007. 17(11): p. 1898–1903.
  • 14. Guzman, L.-M., Belin, D., Carson, M.J., Beckwith, J., Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. Journal of Bacteriology, 1995. 177(14), p. 4121-4130.
  • 15. Newman, J.R., Fuqua C., Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene, 1999. 227: p. 197-203.
  • 16. Patkar, A., Vijayasankaran, N., Urry, D.W., Srienc F., Flow cytometer as a useful tool for process development: Rapid evaluation of expression systems. Journal of Bacteriology, 2002. 93(3): p. 217-229.
  • 17. Boström, M., Markland, K., Sandén, A.M., Hedhammar, M., Hober, S., Larsson, G., Effect of substrate feed rate on recombinant protein secretion, degradation and inclusion body formation in Escherichia coli. Applied Microbiology and Biotechnology, 2005. 68(1): p. 82-90.
  • 18. Sandén, A.M., Boström, M., Markland, K., Larsson, G., Solubility and proteolysis of the Zb-MalE and Zb-MalE31 proteins during overproduction in Escherichia coli. Biotechnology and Bioengineering, 2005. 90(2): p. 239-247.
  • 19. Greefield, L., Boone, T., Wilcox, G., DNA sequence of the araBAD promoter in Escherichia coli B/r. Proceedings of the National Academy of Sciences, 1978. 75(10): p. 4724-4728.
  • 20. Siegele, D.A., Hu, J.C., Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. Proceedings of the National Academy of Sciences, 1997. 94(15): p. 8168–8172.
  • 21. Khlebnikov, A., Risa, Ø, Skaug, T., Carrier, T., Keasling, J.D., Regulatable arabinose-inducible gene expression system with consistent control in all cells of a culture. Journal of Bacteriology, 2007. 182(24): p. 7029-7034.
  • 22. Chae H.J., Delisa M.P., Cha H.J., Weigand W.A., Rao G., Bentley W.E., Framework for online optimization of recombinant protein expression in high-cell-density Escherichia coli cultures using GFP-fusion monitoring. Biotechnology and Bioengineering, 2000. 69(3): p. 275-285.
  • 23. Lu, C., Albano, C.R., Bentley W.E., Rao, G., Differential rates of gene expression monitored by green fluorescent protein. Biotechnology and Bioengineering, 2002. 79(4): p. 429-437.
  • 24. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970. 227(5259): p. 680-685.
  • 25. Sarabipour, S., King, C., Hristova, K., Uninduced high-yield bacterial expression of fluorescent proteins. Analytical Biochemistry, 2017. 449(1): p. 155–157.
  • 26. Demain, A.L., Vaishnav, P., Production of recombinant proteins by microbes and higher organisms. Biotechnology Advances, 2009. 27(3): p. 297-306.
  • 27. Shaner, N.C., Steinbach, P.A., Tsien, R.Y., A guide to choosing fluorescent proteins. Nature Methods, 2005. 2(12): p. 905–909.
There are 27 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Hülya Kuduğ 0000-0003-0365-2760

Bahadır Ataman This is me 0000-0002-8782-2706

Rizvan İmamoğlu 0000-0002-6306-4760

Duygu Düzgün 0000-0002-5998-8397

İsa Gökçe 0000-0002-5023-9947

Publication Date April 15, 2019
Submission Date June 1, 2018
Acceptance Date September 24, 2018
Published in Issue Year 2019 Volume: 3 Issue: 1

Cite

APA Kuduğ, H., Ataman, B., İmamoğlu, R., Düzgün, D., et al. (2019). Production of red fluorescent protein (mCherry) in an inducible E. coli expression system in a bioreactor, purification and characterization. International Advanced Researches and Engineering Journal, 3(1), 20-25.
AMA Kuduğ H, Ataman B, İmamoğlu R, Düzgün D, Gökçe İ. Production of red fluorescent protein (mCherry) in an inducible E. coli expression system in a bioreactor, purification and characterization. Int. Adv. Res. Eng. J. April 2019;3(1):20-25.
Chicago Kuduğ, Hülya, Bahadır Ataman, Rizvan İmamoğlu, Duygu Düzgün, and İsa Gökçe. “Production of Red Fluorescent Protein (mCherry) in an Inducible E. Coli Expression System in a Bioreactor, Purification and Characterization”. International Advanced Researches and Engineering Journal 3, no. 1 (April 2019): 20-25.
EndNote Kuduğ H, Ataman B, İmamoğlu R, Düzgün D, Gökçe İ (April 1, 2019) Production of red fluorescent protein (mCherry) in an inducible E. coli expression system in a bioreactor, purification and characterization. International Advanced Researches and Engineering Journal 3 1 20–25.
IEEE H. Kuduğ, B. Ataman, R. İmamoğlu, D. Düzgün, and İ. Gökçe, “Production of red fluorescent protein (mCherry) in an inducible E. coli expression system in a bioreactor, purification and characterization”, Int. Adv. Res. Eng. J., vol. 3, no. 1, pp. 20–25, 2019.
ISNAD Kuduğ, Hülya et al. “Production of Red Fluorescent Protein (mCherry) in an Inducible E. Coli Expression System in a Bioreactor, Purification and Characterization”. International Advanced Researches and Engineering Journal 3/1 (April 2019), 20-25.
JAMA Kuduğ H, Ataman B, İmamoğlu R, Düzgün D, Gökçe İ. Production of red fluorescent protein (mCherry) in an inducible E. coli expression system in a bioreactor, purification and characterization. Int. Adv. Res. Eng. J. 2019;3:20–25.
MLA Kuduğ, Hülya et al. “Production of Red Fluorescent Protein (mCherry) in an Inducible E. Coli Expression System in a Bioreactor, Purification and Characterization”. International Advanced Researches and Engineering Journal, vol. 3, no. 1, 2019, pp. 20-25.
Vancouver Kuduğ H, Ataman B, İmamoğlu R, Düzgün D, Gökçe İ. Production of red fluorescent protein (mCherry) in an inducible E. coli expression system in a bioreactor, purification and characterization. Int. Adv. Res. Eng. J. 2019;3(1):20-5.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.