Year 2010, Volume 8, Issue 8, Pages 0 - 0 2010-12-01

Generalized Cofinitely Semiperfect Modules

Corrigendum To [1]

56 153

finitely generated module M is a gcs-module if and only if M is a (finite) sum of local modules. Then M is supplemented by [3, 41.6]. This is a contradiction, because there exists finitely generated gcs-modules that are not supplemented (see
Other ID JA73YS48HA
Journal Section Articles
Authors

Author: Corrigendum To

Dates

Publication Date: December 1, 2010

Bibtex @ { ieja266441, journal = {International Electronic Journal of Algebra}, issn = {1306-6048}, eissn = {1306-6048}, address = {Abdullah HARMANCI}, year = {2010}, volume = {8}, pages = {0 - 0}, doi = {}, title = {Generalized Cofinitely Semiperfect Modules}, key = {cite}, author = {To, Corrigendum} }
APA To, C . (2010). Generalized Cofinitely Semiperfect Modules. International Electronic Journal of Algebra, 8 (8), 0-0. Retrieved from http://dergipark.org.tr/ieja/issue/25212/266441
MLA To, C . "Generalized Cofinitely Semiperfect Modules". International Electronic Journal of Algebra 8 (2010): 0-0 <http://dergipark.org.tr/ieja/issue/25212/266441>
Chicago To, C . "Generalized Cofinitely Semiperfect Modules". International Electronic Journal of Algebra 8 (2010): 0-0
RIS TY - JOUR T1 - Generalized Cofinitely Semiperfect Modules AU - Corrigendum To Y1 - 2010 PY - 2010 N1 - DO - T2 - International Electronic Journal of Algebra JF - Journal JO - JOR SP - 0 EP - 0 VL - 8 IS - 8 SN - 1306-6048-1306-6048 M3 - UR - Y2 - 2019 ER -
EndNote %0 International Electronic Journal of Algebra Generalized Cofinitely Semiperfect Modules %A Corrigendum To %T Generalized Cofinitely Semiperfect Modules %D 2010 %J International Electronic Journal of Algebra %P 1306-6048-1306-6048 %V 8 %N 8 %R %U
ISNAD To, Corrigendum . "Generalized Cofinitely Semiperfect Modules". International Electronic Journal of Algebra 8 / 8 (December 2010): 0-0.
AMA To C . Generalized Cofinitely Semiperfect Modules. IEJA. 2010; 8(8): 0-0.
Vancouver To C . Generalized Cofinitely Semiperfect Modules. International Electronic Journal of Algebra. 2010; 8(8): 0-0.