Year 2019, Volume 5, Issue 1, Pages 15 - 23 2019-03-29

Controlling A Robotic Arm Using Handwritten Digit Recognition Software

Ali Çetinkaya [1] , Onur Öztürk [2] , Ali Okatan [3]

94 155

Repetitive tasks in the manufacturing industry is becoming more and more commonplace. The ability to write down a number set and operate the robot using that number set could increase the productivity in the manufacturing industry. For this purpose, our team came up with a robotic application which uses MNIST data set provided by Tensorflow to employ deep learning to identify handwritten digits. The system is equipped with a robotic arm, where an electromagnet is placed on top of the robotic arm. The movement of the robotic arm is triggered via the recognition of handwritten digits using the MNIST data set. The real time image is captured via an external webcam. This robot was designed as a prototype to reduce repetitive tasks conducted by humans. 

MNIST Handwritten Digit Recognition, Deep Learning, Embedded System Robotic Arm Control
  • Y. Lecun, C. Cortes, C.J.C. Burges, MNIST handwritten digit database, http://yann.lecun.com/exdb/mnist/
  • K. Sato, N. Shimoda, Build your own machine-learningpowered robot arm using tensorflow and google cloud Google Cloud blog, 2017.
  • Keras documentation, https://keras.io/
  • TensorFlow, https://www.tensorflow.org/
  • A. Elfasakhany, E. Yanez, K. Baylon, R. Salgado, Design and development of a competitive low-cost robot arm with four degrees of freedom, Modern Mechanical Engineering, pp.47-55.
  • OpenCV library document, https://opencv.org/
  • K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition. Arxiv - Computer Vision and Pattern Recognition .
  • S. Raschka, V. Mirajalili, Python machine learning (pp. 341-385).
  • P. Bezak, P. Bozek, Y. Nikitin, Advanced robotic grasping system using deep learning, Procedia Engineering, 96, pp. 10-20, 2014.
  • A. Dhawan, A. Bhat, S. Sharma, H. K. Kaura, Automated robot with object recognition and handling features, International Journal of Electronics and Computer Science Engineering, ISSN- 2277-1956.
  • E. B. Mathew, D. Khanduja, B. Sapra, B. Bhushan, Robotic arm control through human arm movement detection using potentiometers. 2015 International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE), 2015.
  • B.Iscimen, H. Atasoy, Y. Kutlu, S. Yildirim, E. Yildirim, Smart robot arm motion using computer vision, 2015.
  • M.A. Jayaram, H. Fleyeh, Convex Hulls in Image Processing, A Scoping Review, American Journal of Intelligent Systems, 2016.
  • N. Rai, B. Rai, P. Rai, Computer vision approach for controlling educational robotic arm based on object properties, 2nd International Conference on Emerging Technology Trends in Electronics, Communication and Networking. 2014
  • T. S. Tonbul, M. Sarıtas, Beş eksenli bir edubot robot kolunda ters kinematic hesaplamalar ve yörünge planlaması. J. Fac. Eng. Arch. Gazi Univ. Vol 18, No 1, 145-167, 2013
  • A. B. Rehiara, Kinematics of adeptthree robot arm, Robot Arms, ISBN: 978-953-307-160-2, 2011.
Primary Language en
Subjects Engineering
Journal Section Makaleler
Authors

Orcid: 0000-0003-4535-3953
Author: Ali Çetinkaya (Primary Author)
Institution: Technology Transfer Office, Istanbul Gelisim University
Country: Turkey


Author: Onur Öztürk
Institution: School of Management, Faculty of Engineering, University College London (UCL)
Country: United Kingdom


Orcid: 0000-0002-8893-9711
Author: Ali Okatan
Institution: Department of Computer Engineering, Faculty of Engineering, Istanbul Gelisim University
Country: Turkey


Dates

Publication Date: March 29, 2019

Bibtex @research article { ijet462378, journal = {International Journal of Engineering Technologies IJET}, issn = {2149-0104}, eissn = {2149-5262}, address = {İstanbul Gelisim University}, year = {2019}, volume = {5}, pages = {15 - 23}, doi = {10.19072/ijet.462378}, title = {Controlling A Robotic Arm Using Handwritten Digit Recognition Software}, key = {cite}, author = {Çetinkaya, Ali and Öztürk, Onur and Okatan, Ali} }
APA Çetinkaya, A , Öztürk, O , Okatan, A . (2019). Controlling A Robotic Arm Using Handwritten Digit Recognition Software. International Journal of Engineering Technologies IJET, 5 (1), 15-23. Retrieved from http://dergipark.org.tr/ijet/issue/44104/462378
MLA Çetinkaya, A , Öztürk, O , Okatan, A . "Controlling A Robotic Arm Using Handwritten Digit Recognition Software". International Journal of Engineering Technologies IJET 5 (2019): 15-23 <http://dergipark.org.tr/ijet/issue/44104/462378>
Chicago Çetinkaya, A , Öztürk, O , Okatan, A . "Controlling A Robotic Arm Using Handwritten Digit Recognition Software". International Journal of Engineering Technologies IJET 5 (2019): 15-23
RIS TY - JOUR T1 - Controlling A Robotic Arm Using Handwritten Digit Recognition Software AU - Ali Çetinkaya , Onur Öztürk , Ali Okatan Y1 - 2019 PY - 2019 N1 - DO - T2 - International Journal of Engineering Technologies IJET JF - Journal JO - JOR SP - 15 EP - 23 VL - 5 IS - 1 SN - 2149-0104-2149-5262 M3 - UR - Y2 - 2019 ER -
EndNote %0 International Journal of Engineering Technologies IJET Controlling A Robotic Arm Using Handwritten Digit Recognition Software %A Ali Çetinkaya , Onur Öztürk , Ali Okatan %T Controlling A Robotic Arm Using Handwritten Digit Recognition Software %D 2019 %J International Journal of Engineering Technologies IJET %P 2149-0104-2149-5262 %V 5 %N 1 %R %U
ISNAD Çetinkaya, Ali , Öztürk, Onur , Okatan, Ali . "Controlling A Robotic Arm Using Handwritten Digit Recognition Software". International Journal of Engineering Technologies IJET 5 / 1 (March 2019): 15-23.
AMA Çetinkaya A , Öztürk O , Okatan A . Controlling A Robotic Arm Using Handwritten Digit Recognition Software. IJET. 2019; 5(1): 15-23.
Vancouver Çetinkaya A , Öztürk O , Okatan A . Controlling A Robotic Arm Using Handwritten Digit Recognition Software. International Journal of Engineering Technologies IJET. 2019; 5(1): 23-15.