BibTex RIS Kaynak Göster

Current Status and Perspectives of the Thermomolecular Engine Developing

Yıl 2014, Cilt: 17 Sayı: 1, 33 - 41, 01.02.2014
https://doi.org/10.5541/ijot.77017

Öz

Fundamentally new concept of a heat engine on the basis of heterogeneous working body, consisting of liquid and lyophobic towards it capillary-porous matrix was proposed in the middle of 80's. Unusualness of a new thermodynamic cycle and engine is that the interface of condensed heterogeneous lyophobic systems (HWB), "liquid- rigid solid capillary-porous matrix", the carrier of free surface energy, serves as a working body (in thermodynamic sense) instead of traditional gas/steam. It was first proposed to use potential energy of intermolecular interaction instead of kinetic energy of random (thermal) gas / vapor molecules motion.

Kaynakça

  • J. P. Carroll, US Patent No. 2009/0007562 (A1). Moorpark, CA, US, 200 Retrieved from http://www.freepatentsonline.com.
  • R. A. Proeschel, US Patent No. 7028476 . Thousand Oaks, CA, US, 200 Retrieved from http://www.freepatentsonline.com .
  • H. Schoell, US Patent No. 7080512. Thousand Oaks, CA, US, 200 Retrieved from http://www.freepatentsonline.com.
  • V. A. Eroshenko, Unusual Properties of One complex Thermodynamic System (in Russian). C. R. Acad. Sci. Ukraine, Ser. A, 10, 77-80, 1990.
  • V. A. Eroshenko, Thermomolecular energetics (in Russian). Industrial Heat Engineering, 14, 22-25, 1992. E.W. Washburn, The Dynamics of Capillary Flow. The Phys. Review, 17, 273–283, 1922.
  • V. A. Eroshenko, Thermal engine (in Russian). SovietRussian Patent No. 1,434,881, 1985.
  • V.A. Eroshenko, T.L. Yarosh, Synthesis liquids with a high value of the temperature coefficient of surface tension - a promising way to energy and material storage. Research Bulletin of the NTUU “KPI”, 2, 3750, 2012.
  • T. Reis, P. Woog, Introduction a la chimie-fisique des surfaces (vol. 1). Paris, Dunod, 1952.
  • V.A. Eroshenko, Non-compressibilité et nondilatabilité adiabatique d'un système thermodynamique complexe. Entropie, 196,17-23, 1996.
  • V. A. Eroshenko, Rotary Eroshenko’s thermal engine (in Russian). Soviet-Russian Patent No. 1,452,262, 19 Table Characteristics of modern HWB. № The composition of HWB HWB parameters Reference Liquid Matrix Р int , MPa P ext , MPa H, (%) T, ˚С ΔU, V  , % r pore, nm 1 Distilled water v. 8 ± 4 * 14 7 100 1 v. 15 5 100 7 v 16 W.s. KCl Zeolite CBV-901 HY (mod. SiCl 4 ) 3) 3) 268 24 m. &&& &&& * 17 6 14 50 313 18 11 17 29 353 19 W.s. sarcosil 4) Silica Fluka 100 C 8 (see above) 16 100 env. 8 ± 4 * 20 4 100 env. 5 21 W.s. SCH 5) 2 100 env. 5 22 W.s. NaCl Zeolite ZSM-5 (no mod.) 56 56 ≈0 358 0.53 23 82 82 ≈0 295 24 112 112 ≈0 295 26 m. 25 W.s. КCl Silica Davsil (mod. silyl groups) -380 15 4 * 273 58 m. 0.56 * 34 145 283 35 157 293 36 186 303 37 203 313 38 180 323 39 160 333 Terms and abbreviations used in the table: * The values obtained from PV-diagrams. n / a - not available. env. – Environment temperature. Exact value is not specified. W.s. - Water solution. Concentration: 24m. - Mass concentration (  m , ); 24v. - Bulk concentration (  v , ); 24 - type is not specified. 1) The method of modification - the same as for the MTS-1g. 2) The method of modification is not specified. Material is hydrophobized by the manufacturer. 3) At temperature of -5˚ C HWB has hydrophilic properties. Intrusion occurs spontaneously, extrusion doesn’t occur. 4) Chemical formula of sarcosil - CH 3 (CH 2 ) 10 CON(CH 3 )CH 2 COONa. 5) Chemical formula of SCH – CH 39 NaO 5 x H 2 O. Control action that changes HWB properties. V. A. Eroshenko, A New Paradigm of Mechanical Energy Dissipation. Part 1-2: Theoretical Aspects and practical Solutions. Journal Proceedings of Mechanical Engineers, Part D: Journal of Automobile Engineering, 221, 285–312, 2007.
  • V. A. Eroshenko, Hydrocapillarly engine with external heat supply (in Russian). Soviet-Russian Patent No. 1,508,665, 1987.
  • V. A. Eroshenko, US Patent No. 6615959. Colombes, FR, 2003. Retrieved from http://www.freepatentsonline.com .
  • V. A. Eroshenko and V. I. Aistov, Heat Engine Cycles Optimization According to Thermodynamic Compactness (in Russian). Industrial Heat Engineering, 12, 60–64, 19 L. Tzanis, M. Trzpit, M. Soulard & J. Patarin,. Energetic performances of channel and cage-type zeosils. J. Phys. Chem. C., 116, 20389−20395, 2012.
  • M.A. Saada, M. Soulard, B. Marler, G. Gies J. Patarin, High-pressure water intrusion investigation of pure silica RUB-41 and S-SOD Zeolite Materials. J. Phys. Chem., 115, 425-430, 2011.
  • A. Laouir, L. Luo, D. Tondeur, Thermal machines based on surface energy of wetting: Thermodynamic analysis. AIChE Journal, 49, 764–781, 2003.
  • E.J. Jadczak, C. Magret, P. Ollivier, F. Quenardel, US Patent No 2013/022448 (A1). SNECMA, Paris, FR, 2013. Retrieved from http://www.freepatentsonline.com.
  • A. Laouir, D. Tondeur, Thermodynamic Aspects of Capillary Flows., African Physical Review, 1, 24-25, 200 A. Han, Y. Qiao, Pressure-induced infiltration of aqueous solutions of multiple promoters in a nanoporous silica. J. Am. Chem. Soc., 128, 10348-10349, 2006.
  • A. Han, Y. Qiao, Thermal effects on infiltration of a solubility-sensitive volume-memory liquid. Philosophical Magazine Letters., 87, 25-31, 2007.
  • A. Han, Y. Qiao, A volume-memory liquid. Applied Physics Letters, 91, 173123-1 - 173123-3, 2007.
  • A. Han, Y. Qiao, Infiltration pressure of a nanoporous liquid spring modified by an electrolyte. J. Mater. Res., 22, 644-648, 2007.
  • Y. Qiao, US Patent No. 2009/0243428 (A1). San Diego, CA, US, 200 Retrieved from http://www.freepatentsonline.com.
  • Y. Qiao, Z. Kong, US Patent No. 2010/0225199 (A1). Akron, OH, US, 20 Retrieved from http://www.freepatentsonline.com.
  • A. Galaitsis, US Patent No. 2006/0246288 (A1). Lexington, MA, US, 200 Retrieved from http://www.freepatentsonline.com.
  • L. Liu, Nanofluidics: Fundamentals and Applications in Energy Conversion. (Dissertation, submitted in partial fulfillment of the requirements for the degree of PhD), Columbia University, USA, 2010. Retrieved from http://academiccommons.columbia.edu/.
  • V.S. Egorov, A. Portyanoy, A.P. Sorokin, V.G. Malcev & R. M. Voznesenskiy. RU Patent No. 2138086 (C1). Obninsk, Russian Federation, 1999. Abstract retrieved from http://ru-patent.info.
  • A.G. Portyanoy, E.N. Serdun, A.P. Sorokin & V.G. Malcev, RU Patent No. 2187742 (C1). Obninsk, Russian
  • Int. J. of Thermodynamics (IJoT) Vol. 17 (No. 1) / 41
Yıl 2014, Cilt: 17 Sayı: 1, 33 - 41, 01.02.2014
https://doi.org/10.5541/ijot.77017

Öz

Kaynakça

  • J. P. Carroll, US Patent No. 2009/0007562 (A1). Moorpark, CA, US, 200 Retrieved from http://www.freepatentsonline.com.
  • R. A. Proeschel, US Patent No. 7028476 . Thousand Oaks, CA, US, 200 Retrieved from http://www.freepatentsonline.com .
  • H. Schoell, US Patent No. 7080512. Thousand Oaks, CA, US, 200 Retrieved from http://www.freepatentsonline.com.
  • V. A. Eroshenko, Unusual Properties of One complex Thermodynamic System (in Russian). C. R. Acad. Sci. Ukraine, Ser. A, 10, 77-80, 1990.
  • V. A. Eroshenko, Thermomolecular energetics (in Russian). Industrial Heat Engineering, 14, 22-25, 1992. E.W. Washburn, The Dynamics of Capillary Flow. The Phys. Review, 17, 273–283, 1922.
  • V. A. Eroshenko, Thermal engine (in Russian). SovietRussian Patent No. 1,434,881, 1985.
  • V.A. Eroshenko, T.L. Yarosh, Synthesis liquids with a high value of the temperature coefficient of surface tension - a promising way to energy and material storage. Research Bulletin of the NTUU “KPI”, 2, 3750, 2012.
  • T. Reis, P. Woog, Introduction a la chimie-fisique des surfaces (vol. 1). Paris, Dunod, 1952.
  • V.A. Eroshenko, Non-compressibilité et nondilatabilité adiabatique d'un système thermodynamique complexe. Entropie, 196,17-23, 1996.
  • V. A. Eroshenko, Rotary Eroshenko’s thermal engine (in Russian). Soviet-Russian Patent No. 1,452,262, 19 Table Characteristics of modern HWB. № The composition of HWB HWB parameters Reference Liquid Matrix Р int , MPa P ext , MPa H, (%) T, ˚С ΔU, V  , % r pore, nm 1 Distilled water v. 8 ± 4 * 14 7 100 1 v. 15 5 100 7 v 16 W.s. KCl Zeolite CBV-901 HY (mod. SiCl 4 ) 3) 3) 268 24 m. &&& &&& * 17 6 14 50 313 18 11 17 29 353 19 W.s. sarcosil 4) Silica Fluka 100 C 8 (see above) 16 100 env. 8 ± 4 * 20 4 100 env. 5 21 W.s. SCH 5) 2 100 env. 5 22 W.s. NaCl Zeolite ZSM-5 (no mod.) 56 56 ≈0 358 0.53 23 82 82 ≈0 295 24 112 112 ≈0 295 26 m. 25 W.s. КCl Silica Davsil (mod. silyl groups) -380 15 4 * 273 58 m. 0.56 * 34 145 283 35 157 293 36 186 303 37 203 313 38 180 323 39 160 333 Terms and abbreviations used in the table: * The values obtained from PV-diagrams. n / a - not available. env. – Environment temperature. Exact value is not specified. W.s. - Water solution. Concentration: 24m. - Mass concentration (  m , ); 24v. - Bulk concentration (  v , ); 24 - type is not specified. 1) The method of modification - the same as for the MTS-1g. 2) The method of modification is not specified. Material is hydrophobized by the manufacturer. 3) At temperature of -5˚ C HWB has hydrophilic properties. Intrusion occurs spontaneously, extrusion doesn’t occur. 4) Chemical formula of sarcosil - CH 3 (CH 2 ) 10 CON(CH 3 )CH 2 COONa. 5) Chemical formula of SCH – CH 39 NaO 5 x H 2 O. Control action that changes HWB properties. V. A. Eroshenko, A New Paradigm of Mechanical Energy Dissipation. Part 1-2: Theoretical Aspects and practical Solutions. Journal Proceedings of Mechanical Engineers, Part D: Journal of Automobile Engineering, 221, 285–312, 2007.
  • V. A. Eroshenko, Hydrocapillarly engine with external heat supply (in Russian). Soviet-Russian Patent No. 1,508,665, 1987.
  • V. A. Eroshenko, US Patent No. 6615959. Colombes, FR, 2003. Retrieved from http://www.freepatentsonline.com .
  • V. A. Eroshenko and V. I. Aistov, Heat Engine Cycles Optimization According to Thermodynamic Compactness (in Russian). Industrial Heat Engineering, 12, 60–64, 19 L. Tzanis, M. Trzpit, M. Soulard & J. Patarin,. Energetic performances of channel and cage-type zeosils. J. Phys. Chem. C., 116, 20389−20395, 2012.
  • M.A. Saada, M. Soulard, B. Marler, G. Gies J. Patarin, High-pressure water intrusion investigation of pure silica RUB-41 and S-SOD Zeolite Materials. J. Phys. Chem., 115, 425-430, 2011.
  • A. Laouir, L. Luo, D. Tondeur, Thermal machines based on surface energy of wetting: Thermodynamic analysis. AIChE Journal, 49, 764–781, 2003.
  • E.J. Jadczak, C. Magret, P. Ollivier, F. Quenardel, US Patent No 2013/022448 (A1). SNECMA, Paris, FR, 2013. Retrieved from http://www.freepatentsonline.com.
  • A. Laouir, D. Tondeur, Thermodynamic Aspects of Capillary Flows., African Physical Review, 1, 24-25, 200 A. Han, Y. Qiao, Pressure-induced infiltration of aqueous solutions of multiple promoters in a nanoporous silica. J. Am. Chem. Soc., 128, 10348-10349, 2006.
  • A. Han, Y. Qiao, Thermal effects on infiltration of a solubility-sensitive volume-memory liquid. Philosophical Magazine Letters., 87, 25-31, 2007.
  • A. Han, Y. Qiao, A volume-memory liquid. Applied Physics Letters, 91, 173123-1 - 173123-3, 2007.
  • A. Han, Y. Qiao, Infiltration pressure of a nanoporous liquid spring modified by an electrolyte. J. Mater. Res., 22, 644-648, 2007.
  • Y. Qiao, US Patent No. 2009/0243428 (A1). San Diego, CA, US, 200 Retrieved from http://www.freepatentsonline.com.
  • Y. Qiao, Z. Kong, US Patent No. 2010/0225199 (A1). Akron, OH, US, 20 Retrieved from http://www.freepatentsonline.com.
  • A. Galaitsis, US Patent No. 2006/0246288 (A1). Lexington, MA, US, 200 Retrieved from http://www.freepatentsonline.com.
  • L. Liu, Nanofluidics: Fundamentals and Applications in Energy Conversion. (Dissertation, submitted in partial fulfillment of the requirements for the degree of PhD), Columbia University, USA, 2010. Retrieved from http://academiccommons.columbia.edu/.
  • V.S. Egorov, A. Portyanoy, A.P. Sorokin, V.G. Malcev & R. M. Voznesenskiy. RU Patent No. 2138086 (C1). Obninsk, Russian Federation, 1999. Abstract retrieved from http://ru-patent.info.
  • A.G. Portyanoy, E.N. Serdun, A.P. Sorokin & V.G. Malcev, RU Patent No. 2187742 (C1). Obninsk, Russian
  • Int. J. of Thermodynamics (IJoT) Vol. 17 (No. 1) / 41
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Regular Original Research Article
Yazarlar

Artem Popyk

Valentin Eroshenko Bu kişi benim

Yayımlanma Tarihi 1 Şubat 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 17 Sayı: 1

Kaynak Göster

APA Popyk, A., & Eroshenko, V. (2014). Current Status and Perspectives of the Thermomolecular Engine Developing. International Journal of Thermodynamics, 17(1), 33-41. https://doi.org/10.5541/ijot.77017
AMA Popyk A, Eroshenko V. Current Status and Perspectives of the Thermomolecular Engine Developing. International Journal of Thermodynamics. Şubat 2014;17(1):33-41. doi:10.5541/ijot.77017
Chicago Popyk, Artem, ve Valentin Eroshenko. “Current Status and Perspectives of the Thermomolecular Engine Developing”. International Journal of Thermodynamics 17, sy. 1 (Şubat 2014): 33-41. https://doi.org/10.5541/ijot.77017.
EndNote Popyk A, Eroshenko V (01 Şubat 2014) Current Status and Perspectives of the Thermomolecular Engine Developing. International Journal of Thermodynamics 17 1 33–41.
IEEE A. Popyk ve V. Eroshenko, “Current Status and Perspectives of the Thermomolecular Engine Developing”, International Journal of Thermodynamics, c. 17, sy. 1, ss. 33–41, 2014, doi: 10.5541/ijot.77017.
ISNAD Popyk, Artem - Eroshenko, Valentin. “Current Status and Perspectives of the Thermomolecular Engine Developing”. International Journal of Thermodynamics 17/1 (Şubat 2014), 33-41. https://doi.org/10.5541/ijot.77017.
JAMA Popyk A, Eroshenko V. Current Status and Perspectives of the Thermomolecular Engine Developing. International Journal of Thermodynamics. 2014;17:33–41.
MLA Popyk, Artem ve Valentin Eroshenko. “Current Status and Perspectives of the Thermomolecular Engine Developing”. International Journal of Thermodynamics, c. 17, sy. 1, 2014, ss. 33-41, doi:10.5541/ijot.77017.
Vancouver Popyk A, Eroshenko V. Current Status and Perspectives of the Thermomolecular Engine Developing. International Journal of Thermodynamics. 2014;17(1):33-41.