Araştırma Makalesi
BibTex RIS Kaynak Göster

Interpretation of the Geomorphological Development of the Volcanic Field in the South and Southwest of Isparta with Lineament and Circularity Analysis

Yıl 2019, Sayı: 2, 23 - 36, 15.04.2019

Öz

The research area is one of the young volcanic fields in Anatolia which is located in Isparta city and vicinity. The high field, which borders the Isparta plain from South, Southwest and partly the West, is the result of Plio-Quaternary volcanism. The andesite and trachyandesitic lavas, which were exposed by explosive volcanism in different phases, did not move further away from the exit centers and it formed a high mass by accumulating layer by layer. During the volcanic activity, along with the lava, there were also outlets of pyroclastic material in almost every period of volcanism. The thickness of the pyroclastic layers decreases as they move away from the center of the volcanism. The pyroclastics spread over a wide area which is seen in the sequences of sediment accumulating at distances as long as 45-50 km from the center of volcanism. Andesitic and pyroclastic cones, calderas and dykes are common landforms of very young volcanic topography in the region. In this study; according to the results of lineament and circularity analysis, it was aimed to determine, diagnose and map the geomorphological features of the volcanic field outlined above. For this purpose, through using Geographic Information Systems (GIS) and Remote Sensing (UA) Technologies; Relative Topography Position Index, Curvature Analysis, Lineament Analysis, Circularity analysis were performed. For these analyses, data were generated from LandSat TM, SRTM, ASTER-DEM satellite images and 1/25 000 topography maps. The results of the morphometric analysis have enabled the identification, recognition and mapping of the land forms of the volcanic topography, which are characterized by linear ridges, concave and convex slopes in the studied field. The results were tested and verified in the field.

Kaynakça

  • Abarca, M. A. A., 2006. Lineament extraction from Digital Terrain Model. MSC Thessis in International Institute for Geo-Information Science and Earth observation Enschede, The Netherlands.
  • Abdullah, A., Akhir, J. M., ve Abdullah İ., 2010. Automatic Mapping of Lineaments Using Shaded Relief Images Derived from Digital Elevation Model (DEMs) in the Maran – Sungi Lembing Area, Malaysia. EJGE, 15, pp. 949-957.
  • Akhir, J. A., 1997. Geological Application of Landsat TM Imagery: Mapping and Analysis of Lineament in NW Penisula Malaysia. www.gisdevelopment.net
  • Avcı, V., Sunkar, M. ve Toprak, A., 2018. IV. Uluslararası Ağrı Dağı ve Nuh’un Gemisi Sempozyumu, The Fourth International Mount Ararat anad Noah’s Ark Symposium, pp. 124–132.
  • Blaga, L., 2012. Aspects regarding the signifiance of the curvature types and valuesi the studies of geomorphometry assisted by GIS. Analele Universităţiidin Oradea, Seria Geografie, ISSN 1221-1273, E-ISSN 2065-3409, XXII (2), pp. 327-337.
  • Canpolat, E., 2014. Gölcük (Isparta) Volkanizması ve Volkanik Gaz Risk Analizi. İstanbul Üniversitesi Sosyal Bilimler Enstitüsü Coğrafya Anabilim Dalı Doktora Tezi (Yayınlanmamış).
  • Cengiz, O., Şener, E. ve Yağmurlu, F., 2006. A Satallite image approach to the study of lineaments circular structures and regional geology in the Golcuk Crater district and its environs (Isparta, SW Turkey). Journal of Asian Earth Science, pp. 155-163.
  • Çiçek, İ., 1992. Gölcük Kalderası (Isparta). Türkiye Coğrafyası Uygulama ve Araştırma Merkezi Dergisi, 2, pp. 137-150.
  • Çoban, H., 2005. New geochronologic and isotopic constraints on the evolution of Plio-Quaternary alcaline volcanism from Isparta District SW Turkey. International Symposium on The Geodynamics of Eastern Mediterranean: Active Tectonics Of the Agean Region. Kadir Has University Istanbul,Turkey, 253.
  • Dóniz, J., Romero, C., Coello, E.,Guillén, C., Sánchez,N., García-Cacho, L. ve García, A., 2008. Mor- phological and statistical characterisation ofrecent mafic volcanism on Tenerife (Canary Islands, Spain). Journal of Volcanology and Geothermal Research, 173, pp. 185–195.
  • Elitok, Ö., Özgür, N., ve Yılmaz, K., 2008. Gölcük Volkanizmasının (Isparta) Jeolojik Evrimi, GB Türkiye. Isparta. TÜBİTAK.
  • Evans, I. S. ve Minár, J., 2011. A classification of geomorphometric variables. Geomoprhometry. Org, pp. 105–108.
  • Favalli, M., Karátson, D., Mazzarini, F., Pareschi, M. T. ve Boschi, E., 2009. Morphometry of scoria cones located on a volcano flank: a case study from Mt. Etna (Italy), based on high-resolution LiDAR data. Journal of Volcanology and Geothermal Research, 186, pp. 320–330.
  • Fornaciai, A., Favalli, M., Karátson, D., Tarquini, S. ve Boschi, E., 2012. Morphometry of scoria cones, and their relation to geodynamic setting: A DEM-based analysis. Journal of Volcanology and Geothermal Research, 217–218, pp. 56–72. https://doi.org/10.1016/j.jvolgeores.2011.12.012
  • Gilichinsky, M., Inbar, M., Zaretskaya, N., Melekestsev, I. ve Melnikov, D., 2011. Morphometric measurements of cinder cones from digital elevation models of Tolbachik volcanic field, central Kamchatka. Canadian Journal of Remote Sensing, 36(4), pp. 287–300. https://doi.org/10.5589/m10-049
  • Grosse, P., van Wyk de Vries, B., Euillades, P. A., Kervyn, M. ve Petrinovic, I. A., 2012. Systematic morphometric characterization of volcanic edifices using digital elevation models. Geomorphology, 136(1), pp. 114–131.
  • Gündoğdu, E., Özden, S. ve Karaca, Ö., 2016. Simav fayı ve yakın civarının saha verileri ile alos-palsar ve landsat görüntülerinin karşılaştırmalı yapısal analizi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, pp. 1-12.
  • Hasenaka, T. ve Carmichael, I. S. E., 1985. The cinder cones ofMichoacán–Guanajuato, Cen-tral Mexico: their age, volume and distribution, and magma discharge rate. Journal of Volcanology and Geothermal Research, 25, pp. 105–124.
  • Kazancı, N. ve Karaman, M. E., 1988. Gölcük (Isparta) Pliyosen Volkaniklastik İstifinin Sedimantolojik Özellikleri. Akdeniz Üniv. Isparta Müh. Fakültesi 5. Müh. Haftası, Bildiri Özleri Kitabı, pp. 32.
  • Kereszturi, G. ve Nmeth, K., 2012. Monogenetic Basaltic Volcanoes: Genetic Classification, Growth, Geomorphology and Degradation. Updates in Volcanology - New Advances in Understanding Volcanic Systems, (May 2014), pp. 2–88. https://doi.org/10.5772/51387
  • Koopman, B. N., 1986. A Comperative Study of Lineament Analysis from Different Remote Sensing Imagery Over Areas in the Benue Valley and Jos Plateau Nigeria. International Journal of Remote Sensing, 7, pp. 1763-1771.
  • Kopackova, V., Rapprich, V., Sebesta, J. ve Zelenkov, K., 2012. Slope Dependent Morphometric Analysis as a Tool Contributing to Reconstruction of Volcano Evolution. Earth and Environmental Sciences, https://doi.org/10.5772/29466
  • Lee, T. H, ve Moon, W. M., 2002. Lineament extraction from Landsat TM, JERS-1 SAR, and DEM for geological applications. IEEE International Geoscience and Remote Sensing Symposium. ISBN: 0-7803-7536-X, DOI: 10.1109/IGARSS.2002.1027154.
  • Lefevre, C., Bellon, M. ve Poisson, A., 1983. Leucitites Dans le Volcanisme Pliocene de La Region d'Isparta, Taurides Occidentales, Turquie. C.R. Acad. Sc, pp. 95-149.
  • Jenness, J. 2006. Topographic Position Index (tpi_jen.avx) extension for ArcView 3.x, v. 1.3a. Jenness Enterprises. Available at: http://www.jennessent.com/arcview/tpi.htm.
  • Lillesand, T. M. ve Kiefer, R. W., 2003. Remote Sensing and Image Interpretation. Fourth Edition. ISBN 9971-51-427-3. John Wiley & Sons (ASIA) Pte. Ltd. Singapore.
  • Mallast, U., Gloaguen, R., Geyer, S., Rüdiger, T. ve Siebert, C., 2011. Derivation of groundwater flow-paths based on semi-automatic extraction of lineaments from remote sensing data. Hydrology and Earth System Sciences, 15(8), pp. 2665–2678. https://doi.org/10.5194/hess-15-2665-2011
  • Marple, R. T. ve Schweig, E. S., 1992. Remote Sensing of Alluvial Terrain in a Humid, Tectonically Active Setting: The New Madrid Seismic Zone. Photogrammetric Engineering and Remote Sensing, 58 (2), pp. 209-219.
  • Morris, P. W., 1997. Exponential Longitudinal Profiles of Streams. Earth Surface Processes Landforms, 22 (2), pp. 143 – 163.
  • Özgür, N., Yağmurluoğlu, F., Ertunç, A., Karagüzel, R., Görmüş, M., Elitok, Ö., Çoban, H., 2008. Assesments Of Tectonics And Volcanic Hazards In The Area Of Isparta Around Gölcük Volcano. Ankara: Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) Proje No: 104y213.
  • Parrot, J. F., 2007. Study of Volcanic Cinder Cone Evolution by Means of High Resolution DEMs. Modsim 2007: International Congress on Modelling and Simulation: Land, Water and Environmental Management: Integrated Systems for Sustainability, pp. 1356–1362.
  • Porter, S.C. 1972. Distribution, morphology, and size frequency of cinder cones on Mauna Kea Volcano, Hawaii. Geological Society of America Bulletin, Vol. 83, pp. 3607–3612. doi:10.1130/0016-7606(1972)83[3607:DMASFO]2. 0.CO;2.
  • Philip, G., 1996. Landsat Thematic Mapper data analysis for Quaternary Tectonics in Parts of Doon Valley, NW Himalaya, India. International Journal of Remote Sensing, 17, pp. 143-153.
  • Platevoet, B., Scaillet, S., Guillou, H., Blamart, D., Nomade, S., Massault, M.Yılmaz, K., 2008. Pleistocene Eruptive Chronology Of The Gölcük Volcano, Isparta Angle, Turkey. Quaternaire, 19(2), pp. 147-156.
  • Platoveot, B., Scaillet, S., Guillou, H., Nomade, S., Blamart, D., Poisson, A.,Yılmaz, K., 2006. Recent plinian and phreato-plinian activity of Gölcük volcano, Isparta Angle, Turkey. Communication to the French Geological Society: Tephras and Quaternary Sequences Symposium.
  • Rahnama, M., ve Gloaguen, R., 2014. TecLines: A MATLAB-Based Toolbox for Tectonic Lineament Analysis from Satellite Images and TecLines: A MATLAB-Based Toolbox For Tectonic Linament Analysis from Satelite Images and DEMs, Part 1: Line Segment Detection and Extraction. Remote Sensing, 6, 5938-5958., 5938-5958.
  • Rajasekhar, M., Raju, G. S., Raju, R. S., Ramachandra, M. ve Kumar, B. P., 2018. Data on comparative studies of lineaments extraction from ASTER DEM, SRTM, and Cartosat for Jilledubanderu River basin, Anantapur district, A.P, India by using remote sensing and GIS. Data in Brief, 20, pp. 1676–1682. https://doi.org/10.1016/j.dib.2018.09.023.
  • Schillaci, C., Braun, A. ve Kropáček, J., 2015. Section 2.4.2: Terrain analysis and landform recognition. Geomorphological Techniques (Online Edition), 2, pp. 1–18. https://doi.org/10.13140/RG.2.1.3895.2802
  • Settle, M., 1979. The structure and emplacement of cinder cone fields. American Journal of Science, 279, pp. 1089–1107.
  • Süzen, M. L. ve Toprak, V., 1998. Filtering of Satellite Images in Geological Lineament Analysis: An Application to Fault Zone in Central Turkey. Internatinoal Journal of Remote Sensing, 19, pp. 1101-1114.
  • Tibaldi, A. ve Ferrari, L., 1991. Multisource Remotely Senses Data, Field Checks and Seismicity for the Definition of Active Tectonics in Ecuadorian Andes . International Journal of Remote Sensing, 12(11), pp. 2343-2358.
  • Turoğlu, H., 2016. Coğrafi Bilgi Sistemlerinin Temel Esasları. Genişletilmiş Dördüncü Baskı. ISBN 978-975-9060-51-0, Çantay Kitapevi, İstanbul.
  • Voldati, T., 1995. Multiple-source Remotely Sensed Data For Lithological and Structural Mapping. ITC Journal, 2, pp. 95-113.
  • Web 1, E. (2019, 02 28). ArcMap. desktop.arcgis.com: http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/curvature.htm.
  • Web 2, M. H., 2019. Lecture on curvatures and landforms (NCSU Geospatial Modeling and Analysis). https://www.youtube.com/watch?v=sIhzzKyRfsI adresinden alındı.
  • Wood, C.A., 1980. Morphometric evolution of cinder cones. Journal Volcanology Geotherm. Resources. 7, pp. 387-413.
  • Yiğitbaşıoğlu, H., 2000. Volkanlar. Oluşumları, jeolojik ve jeomorfolojik özellikleri ile dünyadaki dağılışları. ISBN 975-94156-0-6, Bilim Yayıncılık, Ankara.

Isparta Güneyi ve Güneybatısındaki Volkanik Sahanın Jeomorfolojik Gelişiminin Çizgisellik ve Dairesellik Analizleri ile Yorumlanması

Yıl 2019, Sayı: 2, 23 - 36, 15.04.2019

Öz

Araştırma alanı, Isparta
kenti ve çevresinde bulunan Anadolu'daki genç volkanik alanlardan biridir. Isparta
ovasını Güney-Güneybatı ve kısmen Batıdan sınırlayan yüksek saha,
Pliyo-Kuvaterner volkanizmasının sonucudur. Farklı evrelerde gerçekleşen
patlama karakterli volkanizma ile yüzeylenen andezit, trakiandezit lavlar çıkış
merkezlerinden fazla uzaklaşmayarak üst üste birikmiş ve yüksek kütleleri
oluşturmuştur. Volkanik faaliyet sırasında lav ile birlikte hemen her dönemde
piroklastik malzeme çıkışları da olmuştur. Piroklastik tabakalarının
kalınlıkları, volkanizma merkezinden uzaklaştıkça azalır. Geniş alana yayılan
piroklastiklere; volkanizma merkezinden 45-50 km gibi uzak mesafelerdeki
sedimanter depolarda, 5-6 cm kalınlığında istifler halinde rastlanmaktadır. Andezitik
ve piroklastik koniler, kaldera ve dayklar; bölgedeki çok genç volkan
topografyasına ait yaygın yer şekilleridir. Bu çalışmada; çizgisellik ve
dairesellik analiz sonuçlarına göre ana hatları yukarıda özetlenen volkanik
sahanın jeomorfolojik özelliklerine ait tespit, tanı ve haritalarının yapılması
hedeflenmiştir.



Bu amaç için Coğrafi
Bilgi Sistemleri (CBS) ve Uzaktan Algılama (UA) Teknolojileri kullanılarak; Göreceli
Topoğrafik Konum İndisi, Eğrilik Analizi, Çizgisellik, Dairesellik analizleri
yapılmıştır. Bu analizler için LandSat TM, SRTM, ASTER-DEM uydu
görüntülerinden, 1/25 000 ölçekli topografya haritalarından veri üretilmiştir.



Morfometrik analizlere
ait sonuçlar; çalışma sahasındaki çizgisel sırtlar, içbükey ve dışbükey yamaçlar
ile belirginleşen volkan topografyasına ait yer şekillerinin tespitine,
tanınmasına ve haritalanmasına imkân vermiştir. Sonuçlar arazide test edilerek,
doğrulanmıştır.

Kaynakça

  • Abarca, M. A. A., 2006. Lineament extraction from Digital Terrain Model. MSC Thessis in International Institute for Geo-Information Science and Earth observation Enschede, The Netherlands.
  • Abdullah, A., Akhir, J. M., ve Abdullah İ., 2010. Automatic Mapping of Lineaments Using Shaded Relief Images Derived from Digital Elevation Model (DEMs) in the Maran – Sungi Lembing Area, Malaysia. EJGE, 15, pp. 949-957.
  • Akhir, J. A., 1997. Geological Application of Landsat TM Imagery: Mapping and Analysis of Lineament in NW Penisula Malaysia. www.gisdevelopment.net
  • Avcı, V., Sunkar, M. ve Toprak, A., 2018. IV. Uluslararası Ağrı Dağı ve Nuh’un Gemisi Sempozyumu, The Fourth International Mount Ararat anad Noah’s Ark Symposium, pp. 124–132.
  • Blaga, L., 2012. Aspects regarding the signifiance of the curvature types and valuesi the studies of geomorphometry assisted by GIS. Analele Universităţiidin Oradea, Seria Geografie, ISSN 1221-1273, E-ISSN 2065-3409, XXII (2), pp. 327-337.
  • Canpolat, E., 2014. Gölcük (Isparta) Volkanizması ve Volkanik Gaz Risk Analizi. İstanbul Üniversitesi Sosyal Bilimler Enstitüsü Coğrafya Anabilim Dalı Doktora Tezi (Yayınlanmamış).
  • Cengiz, O., Şener, E. ve Yağmurlu, F., 2006. A Satallite image approach to the study of lineaments circular structures and regional geology in the Golcuk Crater district and its environs (Isparta, SW Turkey). Journal of Asian Earth Science, pp. 155-163.
  • Çiçek, İ., 1992. Gölcük Kalderası (Isparta). Türkiye Coğrafyası Uygulama ve Araştırma Merkezi Dergisi, 2, pp. 137-150.
  • Çoban, H., 2005. New geochronologic and isotopic constraints on the evolution of Plio-Quaternary alcaline volcanism from Isparta District SW Turkey. International Symposium on The Geodynamics of Eastern Mediterranean: Active Tectonics Of the Agean Region. Kadir Has University Istanbul,Turkey, 253.
  • Dóniz, J., Romero, C., Coello, E.,Guillén, C., Sánchez,N., García-Cacho, L. ve García, A., 2008. Mor- phological and statistical characterisation ofrecent mafic volcanism on Tenerife (Canary Islands, Spain). Journal of Volcanology and Geothermal Research, 173, pp. 185–195.
  • Elitok, Ö., Özgür, N., ve Yılmaz, K., 2008. Gölcük Volkanizmasının (Isparta) Jeolojik Evrimi, GB Türkiye. Isparta. TÜBİTAK.
  • Evans, I. S. ve Minár, J., 2011. A classification of geomorphometric variables. Geomoprhometry. Org, pp. 105–108.
  • Favalli, M., Karátson, D., Mazzarini, F., Pareschi, M. T. ve Boschi, E., 2009. Morphometry of scoria cones located on a volcano flank: a case study from Mt. Etna (Italy), based on high-resolution LiDAR data. Journal of Volcanology and Geothermal Research, 186, pp. 320–330.
  • Fornaciai, A., Favalli, M., Karátson, D., Tarquini, S. ve Boschi, E., 2012. Morphometry of scoria cones, and their relation to geodynamic setting: A DEM-based analysis. Journal of Volcanology and Geothermal Research, 217–218, pp. 56–72. https://doi.org/10.1016/j.jvolgeores.2011.12.012
  • Gilichinsky, M., Inbar, M., Zaretskaya, N., Melekestsev, I. ve Melnikov, D., 2011. Morphometric measurements of cinder cones from digital elevation models of Tolbachik volcanic field, central Kamchatka. Canadian Journal of Remote Sensing, 36(4), pp. 287–300. https://doi.org/10.5589/m10-049
  • Grosse, P., van Wyk de Vries, B., Euillades, P. A., Kervyn, M. ve Petrinovic, I. A., 2012. Systematic morphometric characterization of volcanic edifices using digital elevation models. Geomorphology, 136(1), pp. 114–131.
  • Gündoğdu, E., Özden, S. ve Karaca, Ö., 2016. Simav fayı ve yakın civarının saha verileri ile alos-palsar ve landsat görüntülerinin karşılaştırmalı yapısal analizi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, pp. 1-12.
  • Hasenaka, T. ve Carmichael, I. S. E., 1985. The cinder cones ofMichoacán–Guanajuato, Cen-tral Mexico: their age, volume and distribution, and magma discharge rate. Journal of Volcanology and Geothermal Research, 25, pp. 105–124.
  • Kazancı, N. ve Karaman, M. E., 1988. Gölcük (Isparta) Pliyosen Volkaniklastik İstifinin Sedimantolojik Özellikleri. Akdeniz Üniv. Isparta Müh. Fakültesi 5. Müh. Haftası, Bildiri Özleri Kitabı, pp. 32.
  • Kereszturi, G. ve Nmeth, K., 2012. Monogenetic Basaltic Volcanoes: Genetic Classification, Growth, Geomorphology and Degradation. Updates in Volcanology - New Advances in Understanding Volcanic Systems, (May 2014), pp. 2–88. https://doi.org/10.5772/51387
  • Koopman, B. N., 1986. A Comperative Study of Lineament Analysis from Different Remote Sensing Imagery Over Areas in the Benue Valley and Jos Plateau Nigeria. International Journal of Remote Sensing, 7, pp. 1763-1771.
  • Kopackova, V., Rapprich, V., Sebesta, J. ve Zelenkov, K., 2012. Slope Dependent Morphometric Analysis as a Tool Contributing to Reconstruction of Volcano Evolution. Earth and Environmental Sciences, https://doi.org/10.5772/29466
  • Lee, T. H, ve Moon, W. M., 2002. Lineament extraction from Landsat TM, JERS-1 SAR, and DEM for geological applications. IEEE International Geoscience and Remote Sensing Symposium. ISBN: 0-7803-7536-X, DOI: 10.1109/IGARSS.2002.1027154.
  • Lefevre, C., Bellon, M. ve Poisson, A., 1983. Leucitites Dans le Volcanisme Pliocene de La Region d'Isparta, Taurides Occidentales, Turquie. C.R. Acad. Sc, pp. 95-149.
  • Jenness, J. 2006. Topographic Position Index (tpi_jen.avx) extension for ArcView 3.x, v. 1.3a. Jenness Enterprises. Available at: http://www.jennessent.com/arcview/tpi.htm.
  • Lillesand, T. M. ve Kiefer, R. W., 2003. Remote Sensing and Image Interpretation. Fourth Edition. ISBN 9971-51-427-3. John Wiley & Sons (ASIA) Pte. Ltd. Singapore.
  • Mallast, U., Gloaguen, R., Geyer, S., Rüdiger, T. ve Siebert, C., 2011. Derivation of groundwater flow-paths based on semi-automatic extraction of lineaments from remote sensing data. Hydrology and Earth System Sciences, 15(8), pp. 2665–2678. https://doi.org/10.5194/hess-15-2665-2011
  • Marple, R. T. ve Schweig, E. S., 1992. Remote Sensing of Alluvial Terrain in a Humid, Tectonically Active Setting: The New Madrid Seismic Zone. Photogrammetric Engineering and Remote Sensing, 58 (2), pp. 209-219.
  • Morris, P. W., 1997. Exponential Longitudinal Profiles of Streams. Earth Surface Processes Landforms, 22 (2), pp. 143 – 163.
  • Özgür, N., Yağmurluoğlu, F., Ertunç, A., Karagüzel, R., Görmüş, M., Elitok, Ö., Çoban, H., 2008. Assesments Of Tectonics And Volcanic Hazards In The Area Of Isparta Around Gölcük Volcano. Ankara: Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) Proje No: 104y213.
  • Parrot, J. F., 2007. Study of Volcanic Cinder Cone Evolution by Means of High Resolution DEMs. Modsim 2007: International Congress on Modelling and Simulation: Land, Water and Environmental Management: Integrated Systems for Sustainability, pp. 1356–1362.
  • Porter, S.C. 1972. Distribution, morphology, and size frequency of cinder cones on Mauna Kea Volcano, Hawaii. Geological Society of America Bulletin, Vol. 83, pp. 3607–3612. doi:10.1130/0016-7606(1972)83[3607:DMASFO]2. 0.CO;2.
  • Philip, G., 1996. Landsat Thematic Mapper data analysis for Quaternary Tectonics in Parts of Doon Valley, NW Himalaya, India. International Journal of Remote Sensing, 17, pp. 143-153.
  • Platevoet, B., Scaillet, S., Guillou, H., Blamart, D., Nomade, S., Massault, M.Yılmaz, K., 2008. Pleistocene Eruptive Chronology Of The Gölcük Volcano, Isparta Angle, Turkey. Quaternaire, 19(2), pp. 147-156.
  • Platoveot, B., Scaillet, S., Guillou, H., Nomade, S., Blamart, D., Poisson, A.,Yılmaz, K., 2006. Recent plinian and phreato-plinian activity of Gölcük volcano, Isparta Angle, Turkey. Communication to the French Geological Society: Tephras and Quaternary Sequences Symposium.
  • Rahnama, M., ve Gloaguen, R., 2014. TecLines: A MATLAB-Based Toolbox for Tectonic Lineament Analysis from Satellite Images and TecLines: A MATLAB-Based Toolbox For Tectonic Linament Analysis from Satelite Images and DEMs, Part 1: Line Segment Detection and Extraction. Remote Sensing, 6, 5938-5958., 5938-5958.
  • Rajasekhar, M., Raju, G. S., Raju, R. S., Ramachandra, M. ve Kumar, B. P., 2018. Data on comparative studies of lineaments extraction from ASTER DEM, SRTM, and Cartosat for Jilledubanderu River basin, Anantapur district, A.P, India by using remote sensing and GIS. Data in Brief, 20, pp. 1676–1682. https://doi.org/10.1016/j.dib.2018.09.023.
  • Schillaci, C., Braun, A. ve Kropáček, J., 2015. Section 2.4.2: Terrain analysis and landform recognition. Geomorphological Techniques (Online Edition), 2, pp. 1–18. https://doi.org/10.13140/RG.2.1.3895.2802
  • Settle, M., 1979. The structure and emplacement of cinder cone fields. American Journal of Science, 279, pp. 1089–1107.
  • Süzen, M. L. ve Toprak, V., 1998. Filtering of Satellite Images in Geological Lineament Analysis: An Application to Fault Zone in Central Turkey. Internatinoal Journal of Remote Sensing, 19, pp. 1101-1114.
  • Tibaldi, A. ve Ferrari, L., 1991. Multisource Remotely Senses Data, Field Checks and Seismicity for the Definition of Active Tectonics in Ecuadorian Andes . International Journal of Remote Sensing, 12(11), pp. 2343-2358.
  • Turoğlu, H., 2016. Coğrafi Bilgi Sistemlerinin Temel Esasları. Genişletilmiş Dördüncü Baskı. ISBN 978-975-9060-51-0, Çantay Kitapevi, İstanbul.
  • Voldati, T., 1995. Multiple-source Remotely Sensed Data For Lithological and Structural Mapping. ITC Journal, 2, pp. 95-113.
  • Web 1, E. (2019, 02 28). ArcMap. desktop.arcgis.com: http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/curvature.htm.
  • Web 2, M. H., 2019. Lecture on curvatures and landforms (NCSU Geospatial Modeling and Analysis). https://www.youtube.com/watch?v=sIhzzKyRfsI adresinden alındı.
  • Wood, C.A., 1980. Morphometric evolution of cinder cones. Journal Volcanology Geotherm. Resources. 7, pp. 387-413.
  • Yiğitbaşıoğlu, H., 2000. Volkanlar. Oluşumları, jeolojik ve jeomorfolojik özellikleri ile dünyadaki dağılışları. ISBN 975-94156-0-6, Bilim Yayıncılık, Ankara.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer), Fiziksel Coğrafya ve Çevre Jeolojisi
Bölüm Makaleler
Yazarlar

Ergin Canpolat 0000-0003-2123-3551

Hüseyin Turoğlu 0000-0003-0173-6995

Yayımlanma Tarihi 15 Nisan 2019
Gönderilme Tarihi 21 Mart 2019
Kabul Tarihi 4 Nisan 2019
Yayımlandığı Sayı Yıl 2019 Sayı: 2

Kaynak Göster

APA Canpolat, E., & Turoğlu, H. (2019). Isparta Güneyi ve Güneybatısındaki Volkanik Sahanın Jeomorfolojik Gelişiminin Çizgisellik ve Dairesellik Analizleri ile Yorumlanması. Jeomorfolojik Araştırmalar Dergisi(2), 23-36.
Jeomorfolojik Araştırmalar Dergisi ( JADER ) / Journal of Geomorphological Researches
TR Dizin - DOAJ - DRJIASOS İndeks - Scientific Indexing Service - CrossrefGoogle Scholar tarafından taranmaktadır. 
Jeomorfoloji Derneği  / Turkish Society for Geomorphology ( www.jd.org.tr )