Araştırma Makalesi
BibTex RIS Kaynak Göster

GERİ DÖNÜŞTÜRÜLMÜŞ VE TİCARİ OLARAK TEMİN EDİLEN TM TİTANYUM ALAŞIMLARININ DARBE DAYANIMININ İNCELENMESİ

Yıl 2019, Cilt: 7 Sayı: 2, 232 - 237, 26.06.2019
https://doi.org/10.21923/jesd.461882

Öz

Titanyum alaşımları yüksek kütle – dayanım oranı gibi
özellikleri sayesinde, biyomedikal, askeri, spor ve havacılık gibi birçok
endüstriyel alanda kullanılmaktadır. Birçok endüstriyel alanda tercih
edilmesine rağmen, yüksek maliyeti ve düşük geri dönüşüm oranı titanyum alaşımı
malzemelerin kullanım alanlarını kısıtlamaktadır. Bu çalışma kapsamında partikül
boyut dağılımının, ticari ve geri dönüştürülmüş toz metal Ti-6Al-4V
alaşımlarının darbe dayanımları üzerindeki etkileri araştırılmaya
çalışılmıştır. Bu kapsamda -40 µm toz partikül boyutundaki TM numunelere Charpy
darbe testi uygulanmış ve numunelerin mikroyapıları incelenmiştir. Sonuçlar -40
 µm toz partikül boyutundaki numuneler
için ticari toz ile üretilenlerin daha yüksek dayanım değerlerine ulaştığı
göstermektedir.

Kaynakça

  • Aizawa T, Halada K, Gutowski TG. Mater. Trans. 2002; 43: 390–96.
  • Cao F, Chandran R, Kumar P. New approach to achieve high strength powder metallurgy Ti-6Al-4V alloy through accelerated sintering at β-transus temperature and hydrogenation-dehydrogenation treatment. Scripta Materialia. 2017; 130: 22–26.
  • Chino Y, Hoshika T, Lee JS, Mabuchi M. J. Mater. Res. 2006; 21: 754–60.
  • Frykholm R, Brash B. Press and Sintering of Titanium. Key Engineering Materials. 2016; 704: 369-377.
  • Froes, F.H., Eylon, D., 1985. Powder Metallurgy of Titanium Alloys—A Rewiew, Titanium Science and Technology. 1, 267-286.
  • Froes, F.H. Eylon, D., 1985. Titanium, Science and Technology, 1, 267, West Germany.
  • Gronostajski J, Marciniak H, Matuszak A. J. Mater. Process.Technol. 2000;106: 34–39.
  • Guitar A, Vigna G, and Luppo MI. Microstructure and Tensile Properties after Thermo Hydrogen Processing of Ti-6Al-4V. Journal of Mechanical Behavior of Biomedical Materials.2009;2: 156-163.
  • German RM. Powder Metallurgy Science. Princeton (NJ): Metal Powder Industries Federation; 1989.
  • German, R.M., 1996. Sintering Theory and Practice. Wiley, 568, USA.
  • Hill S. Titanium Revolution. New Scientist Magazine. 2001; 170: 2297.
  • Kateřina S, Kursa, M., Ivo S., 2014. Powder Metallurgy. University text book, Faculty of Metallurgy and Materials Engineering, VSB- Technical university of ostrava.
  • Lin WC, Ju PC, Chern-Lin JH. A Comparision of the Fatigue Behaviour of the Cast Ti 7.5Mo with Cp Titanium, Ti-6Al-4V and Ti-13Nb-13Zr Alloys. Biomaterials. 2005; 26: 2899-2907.
  • Lütjering G, Williams C. Titanium. Heidelberg: Springer-Verlag; 2003.
  • Lütjering G, Williams C. Engineering Materials and Processes. Springer; 2007.
  • McDonald DT, Lui EW, Palanısamy S, Dargusch MS, Xia K. Achieving Superior Strength and Ductility in Ti-6Al-4V Recycled from Machining Chips by Equal Channel Angular Pressing. Metalurgical and Materials Transactions A. 2014; 45A: 4090-4102.
  • MPIF, 2006. Standard test methods for metal powders and powder metallurgy products. Metal Powder Industries Federation, 118 USA.
  • Ustundag M., Öğütme ve HDH Yöntemleriyle Üretilen Ti-6Al-4V Tozlarının Sinter-HİP Yöntemiyle Sinterlenmesi ve Özelliklerinin İncelenmesi, 2018, SDÜ FBE, Doktora Tezi.
  • Oh JM, Roh KM, Lee BK, Suh CY, Kim W, Kwon H, Lim JW. Preparation of low oxygen content alloy powder from Ti binary alloy scrap by hydrogenation-dehydrogenation and deoxidation process. Journal of Alloys and Compounds. 2014; 593: 61-66.
  • Sarıtaş,.Toz metalurjisi, Makine Mühendisleri El Kitabı, 1994, Baskı MMO, Ankara, 1-2, 64-82.
  • Silva AAM, Santos JF, Strohaecker TR. Microstructural and mechanical characterisation of a Ti-6Al-4V/TiC/10p composite processed by the BE-CHIP method. Composites Science and Technology. 2005; 65: 1749–1755.
  • Tang HP, Qian M, Liu N, Zhang XZ, Yang GY, Wang J. Effect of Powder Reuse Times on Additive Manufacturing of Ti-6Al-4V by Selective Electron Beam Melting. Journal of the Minerals, Metals & Materials Society. 2015; 67: 1-12.
  • Upadhyaya, A., 2002. Powder metallurgy technology. Cambridge Int Science Publishing, 536, USA.
  • Yan Y, Nash GL, Nash P. Effect of density and pore morphology on fatigue properties of sintered Ti–6Al–4V. International Journal of Fatigue. 2013; 55: 81-91.

COMPARISON OF IMPACT PROPERTIES OF RECYCLED AND COMMERCIALLY AVAILABLE PM TITAMIUM ALLOYS

Yıl 2019, Cilt: 7 Sayı: 2, 232 - 237, 26.06.2019
https://doi.org/10.21923/jesd.461882

Öz

Titanium alloys are used
in many specific applicants such as biomedical, military, sporting goods and
aerospace industry due to their high strength properties and low aspect ratio.
Even though their outstanding properties, titanium alloys have low utilization
rate and relatively low recycling ratio during manufacturing of Titanium parts.
In order to determine its mechanical and impact properties for low-cost
Ti-based alloy applications, powder size distribution and compacting pressure
strongly affect the microstructural properties of the sintered Ti-6Al-4V alloy.
This paper presents how the narrow particle size distribution affect the impact
properties of both recycled and commercially available Ti-6Al-4V alloys. Below
40µm particle size distribution range of Ti-6Al-4V alloys were conducted on
3-point bending, Charpy impact test and microstructural evaluation. Results
indicate that -40µm size distributed and recycled Ti-6Al-4V alloys show more
brittle behaviour than commercial available alloys.

Kaynakça

  • Aizawa T, Halada K, Gutowski TG. Mater. Trans. 2002; 43: 390–96.
  • Cao F, Chandran R, Kumar P. New approach to achieve high strength powder metallurgy Ti-6Al-4V alloy through accelerated sintering at β-transus temperature and hydrogenation-dehydrogenation treatment. Scripta Materialia. 2017; 130: 22–26.
  • Chino Y, Hoshika T, Lee JS, Mabuchi M. J. Mater. Res. 2006; 21: 754–60.
  • Frykholm R, Brash B. Press and Sintering of Titanium. Key Engineering Materials. 2016; 704: 369-377.
  • Froes, F.H., Eylon, D., 1985. Powder Metallurgy of Titanium Alloys—A Rewiew, Titanium Science and Technology. 1, 267-286.
  • Froes, F.H. Eylon, D., 1985. Titanium, Science and Technology, 1, 267, West Germany.
  • Gronostajski J, Marciniak H, Matuszak A. J. Mater. Process.Technol. 2000;106: 34–39.
  • Guitar A, Vigna G, and Luppo MI. Microstructure and Tensile Properties after Thermo Hydrogen Processing of Ti-6Al-4V. Journal of Mechanical Behavior of Biomedical Materials.2009;2: 156-163.
  • German RM. Powder Metallurgy Science. Princeton (NJ): Metal Powder Industries Federation; 1989.
  • German, R.M., 1996. Sintering Theory and Practice. Wiley, 568, USA.
  • Hill S. Titanium Revolution. New Scientist Magazine. 2001; 170: 2297.
  • Kateřina S, Kursa, M., Ivo S., 2014. Powder Metallurgy. University text book, Faculty of Metallurgy and Materials Engineering, VSB- Technical university of ostrava.
  • Lin WC, Ju PC, Chern-Lin JH. A Comparision of the Fatigue Behaviour of the Cast Ti 7.5Mo with Cp Titanium, Ti-6Al-4V and Ti-13Nb-13Zr Alloys. Biomaterials. 2005; 26: 2899-2907.
  • Lütjering G, Williams C. Titanium. Heidelberg: Springer-Verlag; 2003.
  • Lütjering G, Williams C. Engineering Materials and Processes. Springer; 2007.
  • McDonald DT, Lui EW, Palanısamy S, Dargusch MS, Xia K. Achieving Superior Strength and Ductility in Ti-6Al-4V Recycled from Machining Chips by Equal Channel Angular Pressing. Metalurgical and Materials Transactions A. 2014; 45A: 4090-4102.
  • MPIF, 2006. Standard test methods for metal powders and powder metallurgy products. Metal Powder Industries Federation, 118 USA.
  • Ustundag M., Öğütme ve HDH Yöntemleriyle Üretilen Ti-6Al-4V Tozlarının Sinter-HİP Yöntemiyle Sinterlenmesi ve Özelliklerinin İncelenmesi, 2018, SDÜ FBE, Doktora Tezi.
  • Oh JM, Roh KM, Lee BK, Suh CY, Kim W, Kwon H, Lim JW. Preparation of low oxygen content alloy powder from Ti binary alloy scrap by hydrogenation-dehydrogenation and deoxidation process. Journal of Alloys and Compounds. 2014; 593: 61-66.
  • Sarıtaş,.Toz metalurjisi, Makine Mühendisleri El Kitabı, 1994, Baskı MMO, Ankara, 1-2, 64-82.
  • Silva AAM, Santos JF, Strohaecker TR. Microstructural and mechanical characterisation of a Ti-6Al-4V/TiC/10p composite processed by the BE-CHIP method. Composites Science and Technology. 2005; 65: 1749–1755.
  • Tang HP, Qian M, Liu N, Zhang XZ, Yang GY, Wang J. Effect of Powder Reuse Times on Additive Manufacturing of Ti-6Al-4V by Selective Electron Beam Melting. Journal of the Minerals, Metals & Materials Society. 2015; 67: 1-12.
  • Upadhyaya, A., 2002. Powder metallurgy technology. Cambridge Int Science Publishing, 536, USA.
  • Yan Y, Nash GL, Nash P. Effect of density and pore morphology on fatigue properties of sintered Ti–6Al–4V. International Journal of Fatigue. 2013; 55: 81-91.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Mustafa Ustundag 0000-0001-5287-8198

Remzi Varol 0000-0003-2427-0710

Yayımlanma Tarihi 26 Haziran 2019
Gönderilme Tarihi 20 Eylül 2018
Kabul Tarihi 31 Aralık 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 2

Kaynak Göster

APA Ustundag, M., & Varol, R. (2019). COMPARISON OF IMPACT PROPERTIES OF RECYCLED AND COMMERCIALLY AVAILABLE PM TITAMIUM ALLOYS. Mühendislik Bilimleri Ve Tasarım Dergisi, 7(2), 232-237. https://doi.org/10.21923/jesd.461882