Year 2019, Volume 2, Issue 1, Pages 1 - 6 2019-01-01

Artificial intelligence in corneal topography

Nazar Saleh [1] , Nebras Hussein [2]

47 227

The purpose of this paper is to explore the effectiveness and efficiency of various artificial intelligence (AI) techniques in extracting features from corneal topographies. A considerable number of dated and contemporary related research papers have been reviewed. The author has only checked the studies that considered developing at least one AI-based algorithm for data classification of topographic patterns. The results of this review emphasize the effectiveness and efficiency of machine learning algorithms in the clinical diagnosis of various eye refractive problems.

Artificial intelligence, classification, feature extraction, topographic images
  • Arbelaez, M. C., Versaci, F., Vestri, G., Barboni, P., & Savini, G. (2012). Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data. Ophthalmology, 119(11), 2231–2238. https://doi.org/10.1016/j.ophtha.2012.06.005
  • Bagherinia, H., Chen, X., Flachenecker, C., Angeles, R., Burger, D., Caroline, P., … Reeder, K. (2008). Support Vector Machine (SVM)-Based Classification of Corneal Topography. Investigative Ophthalmology & Visual Science, 49(13), 1023. Retrieved from http://dx.doi.org/
  • Camarillo, T., Choi, K., Hamilton, G., Miles, M., Muller, K., Williams, K., … Schrepel, P. (2002). Athletes as an Ideal Target Population for Orthokeratology Keratoconus : Improving Quality of Life Through Advancements in Detection and Treatment.
  • Carvalho, L. A. (2005). Preliminary Results of Neural Networks and Zernike Polynomials for Classification of Videokeratography Maps: Optometry and Vision Science, 82(2), 151–158. https://doi.org/10.1097/01.OPX.0000153193.41554.A1
  • de Carvalho, L. A., & Barbosa, M. S. (2008). Neural networks and statistical analysis for classification of corneal videokeratography maps based on Zernike coefficients: a quantitative comparison. Arquivos Brasileiros de Oftalmologia, 71(3), 337–341. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18641817
  • Kabari, L., & Nwachukwu, E. (2012). Neural Networks and Decision Trees For Eye Diseases Diagnosis. In P. Vizureanu (Ed.), Advances in Expert Systems. InTech.
  • Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C. S., Liang, H., Baxter, S. L., … Zhang, K. (2018). Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell, 172(5), 1122–1131.e9. https://doi.org/10.1016/j.cell.2018.02.010
  • Kotsia, I., & Pitas, I. (2007). Facial Expression Recognition in Image Sequences Using Geometric Deformation Features and Support Vector Machines. IEEE Transactions on Image Processing, 16(1), 172–187. https://doi.org/10.1109/TIP.2006.884954
  • Kurniawan, R., Yanti, N., & Ahmad Nazri, M. Z. (2014). Expert systems for self-diagnosing of eye diseases using Naïve Bayes (pp. 113–116). IEEE. https://doi.org/10.1109/ICAICTA.2014.7005925
  • LaFee, S. (2018, February). Artificial Intelligence Quickly and Accurately Diagnoses Eye Diseases and Pneumonia.
  • Maeda, N., Klyce, S. D., & Smolek, M. K. (1995). Neural network classification of corneal topography. Preliminary demonstration. Investigative Ophthalmology & Visual Science, 36(7), 1327–1335.
  • Mazen M Sinjab. (2015). step by step Reading Pentacam Topography (basics and case study series).
  • Mesko, B. (2017). The role of artificial intelligence in precision medicine. Expert Review of Precision Medicine and Drug Development, 2(5), 239–241. https://doi.org/10.1080/23808993.2017.1380516
  • Netto, A. V. (2005). System Based on Computational Intelligence for Ophthalmology Image Understanding. IEEE Latin America Transactions, 3(5), 14–22. https://doi.org/10.1109/TLA.2005.1642434
  • Noaman, K. M., Muharram, A. A., & Alqubati, I. A. (2014). Diagnosis of Poor Eyesight based on Support Vector Machine and Artificial Neural Networks. Journal of Emerging Trends in Computing and Information Sciences, 5(10).
  • Pontil, M., & Verri, A. (1998). Support vector machines for 3D object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(6), 637–646. https://doi.org/10.1109/34.683777
  • Researching for tomorrow [WWW Document], 2018. DeepMind.
  • Ruiz Hidalgo, I., Rodriguez, P., Rozema, J. J., Ni Dhubhghaill, S., Zakaria, N., Tassignon, M.-J., & Koppen, C. (2016). Evaluation of a Machine-Learning Classifier for Keratoconus Detection Based on Scheimpflug Tomography. Cornea, 35(6), 827–832. https://doi.org/10.1097/ICO.0000000000000834
  • Schwiegerling, J., & Greivenkamp, J. E. (1996). Keratoconus detection based on videokeratoscopic height data. Optometry and Vision Science: Official Publication of the American Academy of Optometry, 73(12), 721–728.
  • Smolek, M. K., & Klyce, S. D. (1997). Current keratoconus detection methods compared with a neural network approach. Invest Ophthalmol.Vis.Sci., 38(0146–0404 (Print)), 2290–2299.
  • Toutounchian, F., Shanbehzadeh, J., Khanlari, M., & Stage, A. R. (2012). Detection of Keratoconus and Suspect Keratoconus by Machine Vision. International Multiconference of Engineers and Computer Scientists, 1(March 2012), 14–16.
  • Twa, M. D., Parthasarathy, S., Roberts, C., Mahmoud, A. M., Raasch, T. W., & Bullimore, M. A. (2005). Automated Decision Tree Classification of Corneal Shape: Optometry and Vision Science, 82(12), 1038–1046. https://doi.org/10.1097/01.opx.0000192350.01045.6f
  • Zhang, Z., Srivastava, R., Liu, H., Chen, X., Duan, L., Kee Wong, D. W., … Liu, J. (2014). A survey on computer aided diagnosis for ocular diseases. BMC Medical Informatics and Decision Making, 14. https://doi.org/10.1186/1472-6947-14-80
Primary Language en
Subjects Computer Science, Information System
Published Date January 2019
Journal Section Review Article
Authors

Orcid: 0000-0003-1977-9387
Author: Nazar Saleh (Primary Author)
Institution: AKSARAY UNIVERSITY
Country: Turkey


Author: Nebras Hussein
Country: Iraq


Dates

Publication Date: January 1, 2019

Bibtex @review { jista456592, journal = {Journal of Intelligent Systems: Theory and Applications}, issn = {}, eissn = {2651-3927}, address = {Harun TAŞKIN}, year = {2019}, volume = {2}, pages = {1 - 6}, doi = {}, title = {Artificial intelligence in corneal topography}, key = {cite}, author = {Saleh, Nazar and Hussein, Nebras} }
APA Saleh, N , Hussein, N . (2019). Artificial intelligence in corneal topography. Journal of Intelligent Systems: Theory and Applications, 2 (1), 1-6. Retrieved from http://dergipark.org.tr/jista/issue/41284/456592
MLA Saleh, N , Hussein, N . "Artificial intelligence in corneal topography". Journal of Intelligent Systems: Theory and Applications 2 (2019): 1-6 <http://dergipark.org.tr/jista/issue/41284/456592>
Chicago Saleh, N , Hussein, N . "Artificial intelligence in corneal topography". Journal of Intelligent Systems: Theory and Applications 2 (2019): 1-6
RIS TY - JOUR T1 - Artificial intelligence in corneal topography AU - Nazar Saleh , Nebras Hussein Y1 - 2019 PY - 2019 N1 - DO - T2 - Journal of Intelligent Systems: Theory and Applications JF - Journal JO - JOR SP - 1 EP - 6 VL - 2 IS - 1 SN - -2651-3927 M3 - UR - Y2 - 2018 ER -
EndNote %0 Journal of Intelligent Systems: Theory and Applications Artificial intelligence in corneal topography %A Nazar Saleh , Nebras Hussein %T Artificial intelligence in corneal topography %D 2019 %J Journal of Intelligent Systems: Theory and Applications %P -2651-3927 %V 2 %N 1 %R %U
ISNAD Saleh, Nazar , Hussein, Nebras . "Artificial intelligence in corneal topography". Journal of Intelligent Systems: Theory and Applications 2 / 1 (January 2019): 1-6.
AMA Saleh N , Hussein N . Artificial intelligence in corneal topography. JISTA. 2019; 2(1): 1-6.
Vancouver Saleh N , Hussein N . Artificial intelligence in corneal topography. Journal of Intelligent Systems: Theory and Applications. 2019; 2(1): 6-1.