Araştırma Makalesi
BibTex RIS Kaynak Göster

REMOVAL OF CESIUM FROM AQUEOUS SOLUTION BY ADSORPTION ONTO SİVAS-YILDIZELİ (TURKİYE) VERMICULITE: EQUILIBRIUM, KINETIC AND THERMODYNAMIC STUDIES

Yıl 2018, , 85 - 116, 01.09.2017
https://doi.org/10.18596/jotcsa.317771

Öz

In this study, cesium adsorption performance of raw vermiculite
obtained from Sivas-Yıldızeli region of Turkey was investigated using batch
adsorption method. In order to obtain the optimum adsorption conditons; different
adsorbent dosages, contact times, solution pH’s, initial cesium concentrations
and temperature ranges were investigated. Amount of cesium ions and percentage
of cesium adsorbed by vermiculite in solution media were calculated using
ICP-OES technique and noted as mg/g and %adsorbed Cs. Kinetic studies demonstrated
that adsorption process was in accordance with second order pseudo kinetic
model and equilibrium isotherm modeling studies showed that the process was
compatible with Langmuir, Freundlich and Temkin adsorption isotherm models
meaning the Cs adsorption process had both phsyical and chemical character. Negative
Gibbs energy values obtained from thermodynamic studies revealed that the
adsorption process was spontaneous and had a high feasibility. Additionally, negative
enthalpy value indicated that process was exothermic, meaning the amount of Cs
ions decresead with increasing reaction temperatures and positive entrophy
value showed that disorderliness between solid-liquid phase increased during
adsorption. Results clearly indicate that vermiculite mineral has a promising
potential in removing Cs+ ions from aqueous media which leads
mineral may also be used in decomposing and efficiently removing radioactive
cesium from contaminated waters.  

Kaynakça

  • Suzuki N, Ochi K, Chikuma, T. Cesium adsorption behaviour of vermiculite and its application to column method. J Ion Exchange. 2014;25(4):122-125. DOI:10.5182/jaie.25.122
  • Kim J-O, Lee Seung-Mok, Jeon C. Adsorption characteristics of sericite for cesium ions from an aqueous solution. Chemical Engineering Research and Design. 2014;92:368–374. DOI:10.1016/j.cherd.2013.07.020
  • Long H, Wu P, Yang L, Huang Z, Zhu N, Hu Z. Efficient removal of cesium from aqueous solution with vermiculite of enhanced adsorption property through surface modification by ethylamine. Journal of Colloid and Interface Science. 2014;428:295–301. DOI: 10.1016/j.jcis.2014.05.001
  • Noshin H, Somaieh K, Hossein, A. Equilibrium and thermodynamic studies of cesium adsorption on natural vermiculite and optimization of operation conditions. Iran J Chem Chem Eng. 2009;28(4):29-36. http://www.ijcce.ac.ir/article_6796_1303.html.
  • Sangvanich T, Sukwarotwat V, Wiacek RJ, Grudzien RM, Fryxell GE, Addleman RS, Timchalk C, Yantasee W. Selective capture of cesium and thalium from natural watersand simulated wastes with copper ferrocyanide functionalized mesoporous silica. J Hazard Mater. 2010;182:225–231. DOI: 10.1016/j.jhazmat.2010.06.019.
  • Igwe JC, Abia AA. A bioseparation process for removing heavy metals from waste water using biosorbents. African Journal of Biotechnology. 2006;5(12):167-1179. https://www.ajol.info/index.php/ajb/article/view/43005.
  • Abdel-Ghani NT, Hefny M, El-Chagbaby GAF. Removal of Lead (II) from aqueous solution using low cost abundantly available adsorbents. Int J Environ Sci Tech. 2007;4(1):67-73. DOI: DOI: 10.1007/BF03325963.
  • Gupta VK, Carrott PJM, Ribeiro Carrott MML, Suhas. Low cost adsorbents: Growing approach to waste water treatment a review. Crit Rev Environ Sci Technol. 2009;39:783–842. DOI: 10.1080/10643380801977610.
  • Kim E, Lee C, Chang YY, Chang YS. Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems. ACS Appl Mater Interfaces. 2013;5:9628–9634. DOI: 10.1021/am402615m.
  • Khan NA, Hasan Z, Jhung SH. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J Hazard Mater. 2013;244-245:444–456. DOI: 10.1016/j.jhazmat.2012.11.011.
  • Uddin MK. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal. 2017;308:438–462. DOI: 10.1016/j.cej.2016.09.029.
  • Saleh TA, Sarı A, Tuzen M. Chitosan-modified vermiculite for As(III) adsorption from aqueous solution: Equilibrium, thermodynamic and kinetic studies. Journal of Molecular Liquids. 2016; 219:937–945. DOI: 10.1016/j.molliq.2016.03.060.
  • Stawinski W, Wegrzyn A, Danko T, Freitas O, Figueiredo S, Chimielarz L. Acid-base treated vermiculite as high performance adsorbent: Insights into the mechanism of cationic dyes adsorption, regeneration, recyclability and stability studies. Chemosphere. 2017;173:107-115. DOI: 10.1016/j.chemosphere.2017.01.039.
  • Gharin Nashtifan S, Maghsoudi A. Comparative and competitive adsorptive removal of Ni2+ and Cu2+ from aqueous solution using iron oxide-vermiculite composite. Applied Clay Science. 2017;140:38–49. DOI: 10.1016/j.clay.2016.12.020.
  • Malandrino M, Abollino O. Giacomino A, Aceto M, Mentasti E. Adsorption of Heavy Metals on Vermiculite: Influence of pH and Organic Ligands. J. Colloid and Interface Science. 2006;299:573. DOI: 10.1016/j.jcis.2006.03.011.
  • Sawhney BL. Sorption and fixation of microquantities of cesium by clay minerals: effect of saturating cations. Soil Sci Soc Proc. 1964;28:183–186. DOI: 10.2136/sssaj1964.03615995002800020017x.
  • Sawhney BL. Sorption of cesium from dilute solutions. Soil Sci Soc Proc. 1965;29:25–28. DOI: 10.2136/sssaj1965.03615995002900010010x.
  • Sawhney BL. Unusual sorption of Cs by vermiculite. Nature. 1966;211:893–894. DOI: 10.1038/211893a0.
  • Sawhney BL. Selective sorption and fixation of cations by clayminerals, a review. Clays Clay Minerals. 1972;20(2):93–100. DOI: 10.1346/CCMN.1972.0200208.
  • Sikalidis CA, Misaelides P, Alexiades CA. Caesium selectivity and fixation by vermiculite in the presence of various competing cations. Environ Pollut. 1988;52:67–79. DOI: 10.1016/0269-7491(88)90108-X.
  • Japan Atomic Energy Agency (JAEA). Topics Fukushima No 58: Radioactive cesium is adsorbed onto vermiculite and biotite, mechanism of cesium adsorption has been clarified. JAEA Sector of Fukushima Research and Development. http://fukushima.jaea.go.jp/english/more/index.html, Son erişim tarihi: 26 Ocak 2015.
  • Faithfull NT, editor. Methods in Agricultural Chemical Analysis: a Practical Handbook (First Edition). Aberystwyth: CABI; 2002. 200 p. ISBN: 0851996086.
  • Santos S, Pereira M, Almedia R, Souza AG, Fonseca MG, Jaber M. Silylation of leached-vermiculites following reaction with imidazoleand copper sorption behavior. Journal of Hazardous Materials 306. 2016;406–418. DOI: 10.1016/j.jhazmat.2015.11.042.
  • Dias NC, Steiner PA, Braga MCB. Characterization and Modification of a Clay Mineral Used in Adsorption Tests. Journal of Minerals and Materials Characterization and Engineering. 2015;3: 277-288. DOI: 10.4236/jmmce.2015.34030.
  • Organik Madencilik. Karakoç cevherinin fiziksel ve kimyasal özellikleri. http://www.organikmadencilik.com/?p=112, Son erişim tarihi: 11 Nisan 2017.
  • Dong ZM, Qiu YF, Cao XH. Removal of U(VI) from aqueous media by hydrothermal cross-linking chitosan with phosphate group. Journal of Radioanalytical and Nuclear Chemistry. 2016;1-10. DOI: 10.1007/s10967-016-4722-8.
  • Staunton S, Dumat C, Zsolnay A. Possible role of organic matter in radiocaesium adsorption in soils. Journal of Environmental Radioactivity. 2002;58(2-3):63-173. DOI:10.1016/S0265-931X(01)00064-9.
  • Üçgül E. Sivas-Yıldızeli-Karakoç Flogopit Cevherinin Isısal ve Kimyasal Genleşme Özellikleri. Yüksek Mühendislik Tezi. Hacettepe Üniversitesi, Ankara. 1997;71 sayfa.
  • Addison J. Sivas-Yıldızeli-Karakoç Detaylı Jeolojik Prospeksiyon Çalışması. 2007.
  • Ehsani İ. Bir Vermikülitin Fiziksel, Kimyasal Ve Isıl Özellikleri Üzerine Sülfürik Asit Liçinin Etkileri. Yüksek Lisans Tezi. Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Maden Mühendisliği Anabilim Dalı, Ankara. 2015;74 sayfa.
  • Yalçın H, Bozkaya Ö, Yeşildağ H. Sivas-Yıldızeli Yöresi Ultramafik Plütonik Kayaçlarla İlişkili Flogopit Oluşumlarının Kökeni. Hacettepe Üniversitesi Yerbilimleri Uygulama ve Araştırma Merkezi Bülteni. 2016;37(1):27-49. DOI: http://dx.doi.org/10.17824/yrb.79284.
  • Lagergren S. About the theory of so-called adsorption of soluble substance. Handlingar. 1898; 24:1-39.
  • Ho YS, McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999; 34:451-465. DOI: 10.1016/S0032-9592(98)00112-5.
  • Zeldowitsch, J. Über den mechanismus der katalytischen oxydation von CO an MnO2. Acta Physicochemical URSS. 1934;1:364-449.
  • Ho YS. Review of second-order models for adsorption systems. Journal of Hazardous Materials. 2006;136(3):103-111. DOI:10.1016 /j.jhazmat.2005.12.043.
  • Low MJD. Kinetics of chemisorption of gases on solids. Chemical Reviews. 1960,60(3):267-312. DOI: 10.12691/ijebb-4-2-4.
  • Abdel-Ghani NT, Rawash ESA, El-Chaghaby GA. Equilibrium and kinetic study for the adsorption of p-nitrophenol from wastewater using olive cake based activated carbon. Global J Environ Sci Manage. 2016;2(1):11-18. DOI: 10.7508/gjesm.2016.01.002. DOI: 10.7508/gjesm.2016.01.002.
  • Nethaji S, Sivasamy A, Mandal AB. Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass. Int J Environ Sci Technol. 2013;10:231–242. DOI: 10.1007/s13762-012-0112-0.
  • Chen R, Tanaka H, Kawamoto T, Asai M, Fukushima C, Na H, Kurihara M, Watanabe M, Arisaka M, Nankawa T. Selective removal of cesium ions from wastewater using copper hexacyanoferrate nanofilms in an electrochemical system. Electrochimica Acta. 2013;87:119 –125. DOI: 10.1016/j.electacta.2012.08.124.
  • Sakamoto S, Kawase Y. Adsorption capacities of poly-g-glutamic acid and its sodium salt for cesium removal from radioactive wastewaters. Journal of Environmental Radioactivity. 2016; 151-158. DOI: 10.1016/j.jenvrad.2016.10.004.
  • Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918;40:1361–1403. DOI:10.1021/ja02242a004.
  • Freundlich H. Über die Absorption in Lösungen. Zeitschrift für Physikalische Chemie. 1906;57:385.
  • Dubinin MM. The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface. Chem Rev. 1960;60:235–266. DOI: 10.1021/cr60204a006.
  • Temkin MJ, Pyzhev V. Recent modifications to Langmuir isotherms. Acta Physicochim URSS. 1940;12:217–222.
  • Zacaroni LM, Magriotis ZM, Cardoso Md-G, Santiago WD, Mendonça Jo-G, Vieira SS, Nelson DL. Natural clay and commercial activated charcoal: properties and application for the removal of copper from cachaça. Food Control. 2015;47:536–544. DOI: doi.org/10.1016/j.foodcont.2014.07.035.
  • Bentahar Y, Hurel C, Draoui K, Khairoun S, Marmier N. Adsorptive properties of Moroccan clays for the removal of arsenic(V) from aqueous solution. Appl Clay Sci. 2016;119:385–392. DOI: 10.1016/j.clay.2015.11.008.
  • Khan TA, Singh VV. Removal of cadmium(II), lead(II), and chromium(VI) ions from aqueous solution using clay. Toxicol Environ Chem. 2010;92:1435–1446. DOI: 10.1080/02772241003592930.
  • Priyantha N, Bandaranayaka A. Interaction of Cr(VI) species with thermally treated brick clay. Environ Sci Pollut Res. 2011;18:75–81. DOI: 10.1007/s11356-010-0358-3.
  • Alemayehu DD, Singh SK, Tessema DA. Assessment of the adsorption capacities of fired clay soils from Jimma (Ethiopia) for the removal of Cr (VI) from aqueous solution. Univ J Environ Res Technol. 2012;2:411–420. http://www.environmentaljournal.org/2-5/ujert-2-5-6.pdf.
  • Mckay G, Blair HS, Gardener JR. Adsorption of dyes on chitin. I. Equilibrium studies. Journal of Applied Polymer Science. 1982;27(8):3043-3057. DOI: 10.1002/app.1982.070270827. Meroufel B, Benali, O, Benyahia M, Benmoussa Y, Zenasni MA. Adsorptive removal of anionic dye from aqueous solutions by Algerian kaolin: Characteristics, isotherm, kinetic and thermodynamic studies. J Mater Environ Sci. 2013;4(3):482-491. http://www.jmaterenvironsci.com/Document/vol4/vol4_N3/60-JMES-361-2013-Meroufel.pdf.
  • Vijayakumar G, Tamilarasan R, Dharmendirakumar M. Adsorption, Kinetic, Equilibrium and Thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite. J Mater Environ Sci 3(1). 2012;157-170. http://www.jmaterenvironsci.com/Document/vol3/16-JMES-139-2011-Tamilarasan.pdf.
  • Wibowo E, Rokhmat M, Sutisna, Khairurrijal, Abdullah M. Reduction of seawater salinity by natural zeolite (Clinoptilolite): Adsorption isotherms, thermodynamics and kinetics. Desalination. 2017;409:146–156. DOI: 10.1016/j.desal.2017.01.026.
  • Kyziol-Komosinska J, Rosik-Dulewska C, Franus M, Antoszczyszyn-Szpicka P, Czupiol J, Krzyzewska I. Sorption capacities of natural and synthetic zeolites for Cu(II) ions. Pol J Environ Stud. 2015;24(3):1111–1123. DOI: 10.15244/pjoes/30923.
  • Can N, Can Ömür B, Altındal A. Modeling of heavy metal ion adsorption isotherms onto metallophthalocyanine film. Sensors and Actuators B. 2016;237:953–961. DOI: 10.1016/j.snb.2016.07.026.
  • Hasany SM, Chaudhary MH. Sorption potential of Hare River sand for theremoval of antimony from acidic aqueous solution. Appl Radiat Isot. 1996;47:467–471. DOI: 10.1016/0969-8043(95)00310-X.
  • Ibrahim MB, Sani S. Comparative Isotherms Studies on Adsorptive Removal of Congo Red from Wastewater by Watermelon Rinds and Neem-Tree Leaves. Open Journal of Physical Chemistry. 2014;4:139-146. DOI: 10.4236/ojpc.2014.44017 . Lian L, Guo L, Guo C. Adsorption of Congo red from aqueous solutions onto Ca-bentonite. Journal of Hazardous Materials. 2009;161(1):126-131. DOI: 10.1016/j.jhazmat.2008.03.063.
Yıl 2018, , 85 - 116, 01.09.2017
https://doi.org/10.18596/jotcsa.317771

Öz

Kaynakça

  • Suzuki N, Ochi K, Chikuma, T. Cesium adsorption behaviour of vermiculite and its application to column method. J Ion Exchange. 2014;25(4):122-125. DOI:10.5182/jaie.25.122
  • Kim J-O, Lee Seung-Mok, Jeon C. Adsorption characteristics of sericite for cesium ions from an aqueous solution. Chemical Engineering Research and Design. 2014;92:368–374. DOI:10.1016/j.cherd.2013.07.020
  • Long H, Wu P, Yang L, Huang Z, Zhu N, Hu Z. Efficient removal of cesium from aqueous solution with vermiculite of enhanced adsorption property through surface modification by ethylamine. Journal of Colloid and Interface Science. 2014;428:295–301. DOI: 10.1016/j.jcis.2014.05.001
  • Noshin H, Somaieh K, Hossein, A. Equilibrium and thermodynamic studies of cesium adsorption on natural vermiculite and optimization of operation conditions. Iran J Chem Chem Eng. 2009;28(4):29-36. http://www.ijcce.ac.ir/article_6796_1303.html.
  • Sangvanich T, Sukwarotwat V, Wiacek RJ, Grudzien RM, Fryxell GE, Addleman RS, Timchalk C, Yantasee W. Selective capture of cesium and thalium from natural watersand simulated wastes with copper ferrocyanide functionalized mesoporous silica. J Hazard Mater. 2010;182:225–231. DOI: 10.1016/j.jhazmat.2010.06.019.
  • Igwe JC, Abia AA. A bioseparation process for removing heavy metals from waste water using biosorbents. African Journal of Biotechnology. 2006;5(12):167-1179. https://www.ajol.info/index.php/ajb/article/view/43005.
  • Abdel-Ghani NT, Hefny M, El-Chagbaby GAF. Removal of Lead (II) from aqueous solution using low cost abundantly available adsorbents. Int J Environ Sci Tech. 2007;4(1):67-73. DOI: DOI: 10.1007/BF03325963.
  • Gupta VK, Carrott PJM, Ribeiro Carrott MML, Suhas. Low cost adsorbents: Growing approach to waste water treatment a review. Crit Rev Environ Sci Technol. 2009;39:783–842. DOI: 10.1080/10643380801977610.
  • Kim E, Lee C, Chang YY, Chang YS. Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems. ACS Appl Mater Interfaces. 2013;5:9628–9634. DOI: 10.1021/am402615m.
  • Khan NA, Hasan Z, Jhung SH. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J Hazard Mater. 2013;244-245:444–456. DOI: 10.1016/j.jhazmat.2012.11.011.
  • Uddin MK. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal. 2017;308:438–462. DOI: 10.1016/j.cej.2016.09.029.
  • Saleh TA, Sarı A, Tuzen M. Chitosan-modified vermiculite for As(III) adsorption from aqueous solution: Equilibrium, thermodynamic and kinetic studies. Journal of Molecular Liquids. 2016; 219:937–945. DOI: 10.1016/j.molliq.2016.03.060.
  • Stawinski W, Wegrzyn A, Danko T, Freitas O, Figueiredo S, Chimielarz L. Acid-base treated vermiculite as high performance adsorbent: Insights into the mechanism of cationic dyes adsorption, regeneration, recyclability and stability studies. Chemosphere. 2017;173:107-115. DOI: 10.1016/j.chemosphere.2017.01.039.
  • Gharin Nashtifan S, Maghsoudi A. Comparative and competitive adsorptive removal of Ni2+ and Cu2+ from aqueous solution using iron oxide-vermiculite composite. Applied Clay Science. 2017;140:38–49. DOI: 10.1016/j.clay.2016.12.020.
  • Malandrino M, Abollino O. Giacomino A, Aceto M, Mentasti E. Adsorption of Heavy Metals on Vermiculite: Influence of pH and Organic Ligands. J. Colloid and Interface Science. 2006;299:573. DOI: 10.1016/j.jcis.2006.03.011.
  • Sawhney BL. Sorption and fixation of microquantities of cesium by clay minerals: effect of saturating cations. Soil Sci Soc Proc. 1964;28:183–186. DOI: 10.2136/sssaj1964.03615995002800020017x.
  • Sawhney BL. Sorption of cesium from dilute solutions. Soil Sci Soc Proc. 1965;29:25–28. DOI: 10.2136/sssaj1965.03615995002900010010x.
  • Sawhney BL. Unusual sorption of Cs by vermiculite. Nature. 1966;211:893–894. DOI: 10.1038/211893a0.
  • Sawhney BL. Selective sorption and fixation of cations by clayminerals, a review. Clays Clay Minerals. 1972;20(2):93–100. DOI: 10.1346/CCMN.1972.0200208.
  • Sikalidis CA, Misaelides P, Alexiades CA. Caesium selectivity and fixation by vermiculite in the presence of various competing cations. Environ Pollut. 1988;52:67–79. DOI: 10.1016/0269-7491(88)90108-X.
  • Japan Atomic Energy Agency (JAEA). Topics Fukushima No 58: Radioactive cesium is adsorbed onto vermiculite and biotite, mechanism of cesium adsorption has been clarified. JAEA Sector of Fukushima Research and Development. http://fukushima.jaea.go.jp/english/more/index.html, Son erişim tarihi: 26 Ocak 2015.
  • Faithfull NT, editor. Methods in Agricultural Chemical Analysis: a Practical Handbook (First Edition). Aberystwyth: CABI; 2002. 200 p. ISBN: 0851996086.
  • Santos S, Pereira M, Almedia R, Souza AG, Fonseca MG, Jaber M. Silylation of leached-vermiculites following reaction with imidazoleand copper sorption behavior. Journal of Hazardous Materials 306. 2016;406–418. DOI: 10.1016/j.jhazmat.2015.11.042.
  • Dias NC, Steiner PA, Braga MCB. Characterization and Modification of a Clay Mineral Used in Adsorption Tests. Journal of Minerals and Materials Characterization and Engineering. 2015;3: 277-288. DOI: 10.4236/jmmce.2015.34030.
  • Organik Madencilik. Karakoç cevherinin fiziksel ve kimyasal özellikleri. http://www.organikmadencilik.com/?p=112, Son erişim tarihi: 11 Nisan 2017.
  • Dong ZM, Qiu YF, Cao XH. Removal of U(VI) from aqueous media by hydrothermal cross-linking chitosan with phosphate group. Journal of Radioanalytical and Nuclear Chemistry. 2016;1-10. DOI: 10.1007/s10967-016-4722-8.
  • Staunton S, Dumat C, Zsolnay A. Possible role of organic matter in radiocaesium adsorption in soils. Journal of Environmental Radioactivity. 2002;58(2-3):63-173. DOI:10.1016/S0265-931X(01)00064-9.
  • Üçgül E. Sivas-Yıldızeli-Karakoç Flogopit Cevherinin Isısal ve Kimyasal Genleşme Özellikleri. Yüksek Mühendislik Tezi. Hacettepe Üniversitesi, Ankara. 1997;71 sayfa.
  • Addison J. Sivas-Yıldızeli-Karakoç Detaylı Jeolojik Prospeksiyon Çalışması. 2007.
  • Ehsani İ. Bir Vermikülitin Fiziksel, Kimyasal Ve Isıl Özellikleri Üzerine Sülfürik Asit Liçinin Etkileri. Yüksek Lisans Tezi. Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Maden Mühendisliği Anabilim Dalı, Ankara. 2015;74 sayfa.
  • Yalçın H, Bozkaya Ö, Yeşildağ H. Sivas-Yıldızeli Yöresi Ultramafik Plütonik Kayaçlarla İlişkili Flogopit Oluşumlarının Kökeni. Hacettepe Üniversitesi Yerbilimleri Uygulama ve Araştırma Merkezi Bülteni. 2016;37(1):27-49. DOI: http://dx.doi.org/10.17824/yrb.79284.
  • Lagergren S. About the theory of so-called adsorption of soluble substance. Handlingar. 1898; 24:1-39.
  • Ho YS, McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999; 34:451-465. DOI: 10.1016/S0032-9592(98)00112-5.
  • Zeldowitsch, J. Über den mechanismus der katalytischen oxydation von CO an MnO2. Acta Physicochemical URSS. 1934;1:364-449.
  • Ho YS. Review of second-order models for adsorption systems. Journal of Hazardous Materials. 2006;136(3):103-111. DOI:10.1016 /j.jhazmat.2005.12.043.
  • Low MJD. Kinetics of chemisorption of gases on solids. Chemical Reviews. 1960,60(3):267-312. DOI: 10.12691/ijebb-4-2-4.
  • Abdel-Ghani NT, Rawash ESA, El-Chaghaby GA. Equilibrium and kinetic study for the adsorption of p-nitrophenol from wastewater using olive cake based activated carbon. Global J Environ Sci Manage. 2016;2(1):11-18. DOI: 10.7508/gjesm.2016.01.002. DOI: 10.7508/gjesm.2016.01.002.
  • Nethaji S, Sivasamy A, Mandal AB. Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass. Int J Environ Sci Technol. 2013;10:231–242. DOI: 10.1007/s13762-012-0112-0.
  • Chen R, Tanaka H, Kawamoto T, Asai M, Fukushima C, Na H, Kurihara M, Watanabe M, Arisaka M, Nankawa T. Selective removal of cesium ions from wastewater using copper hexacyanoferrate nanofilms in an electrochemical system. Electrochimica Acta. 2013;87:119 –125. DOI: 10.1016/j.electacta.2012.08.124.
  • Sakamoto S, Kawase Y. Adsorption capacities of poly-g-glutamic acid and its sodium salt for cesium removal from radioactive wastewaters. Journal of Environmental Radioactivity. 2016; 151-158. DOI: 10.1016/j.jenvrad.2016.10.004.
  • Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918;40:1361–1403. DOI:10.1021/ja02242a004.
  • Freundlich H. Über die Absorption in Lösungen. Zeitschrift für Physikalische Chemie. 1906;57:385.
  • Dubinin MM. The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface. Chem Rev. 1960;60:235–266. DOI: 10.1021/cr60204a006.
  • Temkin MJ, Pyzhev V. Recent modifications to Langmuir isotherms. Acta Physicochim URSS. 1940;12:217–222.
  • Zacaroni LM, Magriotis ZM, Cardoso Md-G, Santiago WD, Mendonça Jo-G, Vieira SS, Nelson DL. Natural clay and commercial activated charcoal: properties and application for the removal of copper from cachaça. Food Control. 2015;47:536–544. DOI: doi.org/10.1016/j.foodcont.2014.07.035.
  • Bentahar Y, Hurel C, Draoui K, Khairoun S, Marmier N. Adsorptive properties of Moroccan clays for the removal of arsenic(V) from aqueous solution. Appl Clay Sci. 2016;119:385–392. DOI: 10.1016/j.clay.2015.11.008.
  • Khan TA, Singh VV. Removal of cadmium(II), lead(II), and chromium(VI) ions from aqueous solution using clay. Toxicol Environ Chem. 2010;92:1435–1446. DOI: 10.1080/02772241003592930.
  • Priyantha N, Bandaranayaka A. Interaction of Cr(VI) species with thermally treated brick clay. Environ Sci Pollut Res. 2011;18:75–81. DOI: 10.1007/s11356-010-0358-3.
  • Alemayehu DD, Singh SK, Tessema DA. Assessment of the adsorption capacities of fired clay soils from Jimma (Ethiopia) for the removal of Cr (VI) from aqueous solution. Univ J Environ Res Technol. 2012;2:411–420. http://www.environmentaljournal.org/2-5/ujert-2-5-6.pdf.
  • Mckay G, Blair HS, Gardener JR. Adsorption of dyes on chitin. I. Equilibrium studies. Journal of Applied Polymer Science. 1982;27(8):3043-3057. DOI: 10.1002/app.1982.070270827. Meroufel B, Benali, O, Benyahia M, Benmoussa Y, Zenasni MA. Adsorptive removal of anionic dye from aqueous solutions by Algerian kaolin: Characteristics, isotherm, kinetic and thermodynamic studies. J Mater Environ Sci. 2013;4(3):482-491. http://www.jmaterenvironsci.com/Document/vol4/vol4_N3/60-JMES-361-2013-Meroufel.pdf.
  • Vijayakumar G, Tamilarasan R, Dharmendirakumar M. Adsorption, Kinetic, Equilibrium and Thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite. J Mater Environ Sci 3(1). 2012;157-170. http://www.jmaterenvironsci.com/Document/vol3/16-JMES-139-2011-Tamilarasan.pdf.
  • Wibowo E, Rokhmat M, Sutisna, Khairurrijal, Abdullah M. Reduction of seawater salinity by natural zeolite (Clinoptilolite): Adsorption isotherms, thermodynamics and kinetics. Desalination. 2017;409:146–156. DOI: 10.1016/j.desal.2017.01.026.
  • Kyziol-Komosinska J, Rosik-Dulewska C, Franus M, Antoszczyszyn-Szpicka P, Czupiol J, Krzyzewska I. Sorption capacities of natural and synthetic zeolites for Cu(II) ions. Pol J Environ Stud. 2015;24(3):1111–1123. DOI: 10.15244/pjoes/30923.
  • Can N, Can Ömür B, Altındal A. Modeling of heavy metal ion adsorption isotherms onto metallophthalocyanine film. Sensors and Actuators B. 2016;237:953–961. DOI: 10.1016/j.snb.2016.07.026.
  • Hasany SM, Chaudhary MH. Sorption potential of Hare River sand for theremoval of antimony from acidic aqueous solution. Appl Radiat Isot. 1996;47:467–471. DOI: 10.1016/0969-8043(95)00310-X.
  • Ibrahim MB, Sani S. Comparative Isotherms Studies on Adsorptive Removal of Congo Red from Wastewater by Watermelon Rinds and Neem-Tree Leaves. Open Journal of Physical Chemistry. 2014;4:139-146. DOI: 10.4236/ojpc.2014.44017 . Lian L, Guo L, Guo C. Adsorption of Congo red from aqueous solutions onto Ca-bentonite. Journal of Hazardous Materials. 2009;161(1):126-131. DOI: 10.1016/j.jhazmat.2008.03.063.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik, Kimya Mühendisliği
Bölüm Makaleler
Yazarlar

Hilmi Arkut Akalın

Ümran Hiçsönmez

Hatice Yılmaz

Yayımlanma Tarihi 1 Eylül 2017
Gönderilme Tarihi 31 Mayıs 2017
Kabul Tarihi 13 Kasım 2017
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

Vancouver Akalın HA, Hiçsönmez Ü, Yılmaz H. REMOVAL OF CESIUM FROM AQUEOUS SOLUTION BY ADSORPTION ONTO SİVAS-YILDIZELİ (TURKİYE) VERMICULITE: EQUILIBRIUM, KINETIC AND THERMODYNAMIC STUDIES. JOTCSA. 2017;5(1):85-116.