Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 6 Sayı: 2, 143 - 148, 15.06.2019
https://doi.org/10.18596/jotcsa.484444

Öz

Kaynakça

  • 1. Block E. The Chemistry of Garlic and Onions. Sci Am. 1985 Mar;252(3):114–21.
  • 2. Hassan HT. Ajoene (natural garlic compound): a new anti-leukaemia agent for AML therapy. Leuk Res. 2004 Jul;28(7):667–71.
  • 3. Yoshida S, Kasuga S, Hayashi N, Ushiroguchi T, Matsuura H, Nakagawa S. Antifungal activity of ajoene derived from garlic. Appl Env Microbiol. 1987 Mar;53(3):615–7.
  • 4. Visbal G, San-Blas G, Murgich J, Franco H. Paracoccidioides brasiliensis, paracoccidioidomycosis, and antifungal antibiotics. Curr Drug Targets Infect Disord. 2005 Sep;5(3):211–26.
  • 5. Naganawa R, Iwata N, Ishikawa K, Fukuda H, Fujino T, Suzuki A. Inhibition of microbial growth by ajoene, a sulfur-containing compound derived from garlic. Appl Environ Microbiol. 1996 Nov;62(11):4238–42.
  • 6. Yang J-Y, Della-Fera MA, Nelson-Dooley C, Baile CA. Molecular mechanisms of apoptosis induced by ajoene in 3T3-L1 adipocytes. Obes Silver Spring Md. 2006 Mar;14(3):388–97.
  • 7. Powolny AA, Singh SV. Multitargeted prevention and therapy of cancer by diallyl trisulfide and related Allium vegetable-derived organosulfur compounds. Cancer Lett. 2008 Oct 8;269(2):305–14.
  • 8. Kumar S, Chatterjee S, Kumar S. Dual anti-cholinesterase activity of ajoene by In silico and In vitro studies. Pharmacogn Res. 2018 Apr;10(2):225-229.
  • 9. Kaschula CH, Hunter R, Stellenboom N, Caira MR, Winks S, Ogunleye T, Richards P, Cotton J, Zilbeyaz K, Wang Y, Siyo V, Ngarande E, Parker MI. Structure-activity studies on the anti-proliferation activity of ajoene analogues in WHCO1 oesophageal cancer cells. Eur J Med Chem. 2012 Apr;50:236–54.
  • 10. De Simone G, Di Fiore A, Capasso C, Supuran CT. The zinc coordination pattern in the η- carbonic anhydrase from Plasmodium falciparum is different from all other carbonic anhydrase genetic families. Bioorg Med Chem Lett. 2015 Apr;25(7):1385–9.
  • 11. Del Prete S, Vullo D, Fisher GM, Andrews KT, Poulsen S-A, Capasso C, Supuran CT. Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum--the η-carbonic anhydrases. Bioorg Med Chem Lett. 2014 Sep;24(18):4389–96.
  • 12. Ozensoy Guler O, Capasso C, Supuran CT. A magnificent enzyme superfamily: carbonic anhydrases, their purification and characterization. J Enzyme Inhib Med Chem. 2016 Oct;31(5):689–94.
  • 13. Supuran CT, Capasso C. Carbonic Anhydrase from Porphyromonas Gingivalis as a Drug Target. Pathog Basel Switz. 2017 Jul;6(3):30-43.
  • 14. Supuran CT, Scozzafava A, Casini A. Carbonic anhydrase inhibitors. Med Res Rev. 2003 Mar;23(2):146–89.
  • 15. Scozzafava A, Mastrolorenzo A, Supuran CT. Modulation of carbonic anhydrase activity and its applications in therapy. Expert Opin Ther Pat. 2004 May;14(5):667–702.
  • 16. Supuran CT. Therapeutic applications of the carbonic anhydrase inhibitors. Therapy. 2007 May;4(3):355–78.
  • 17. Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov. 2008 Feb;7(2):168–81.
  • 18. Supuran CT. How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem. 2016 Nov;31(3):345–60.
  • 19. Supuran CT. Carbonic anhydrase activators. Future Med Chem. 2018 Mar;10(5):561–73.
  • 20. García-Ayllón M-S, Small DH, Avila J, Sáez-Valero J. Revisiting the Role of Acetylcholinesterase in Alzheimer’s Disease: Cross-Talk with P-tau and β-Amyloid. Front Mol Neurosci. 2011 Sept;4:22.
  • 21. Bayram E, Senturk M, Kufrevioglu OI, Supuran CT. In vitro inhibition of salicylic acid derivatives on human cytosolic carbonic anhydrase isozymes I and II. Bioorg Med Chem. 2008 Oct;16(20):9101–5.
  • 22. Verpoorte JA, Mehta S, Edsall JT. Esterase activities of human carbonic anhydrases B and C. J Biol Chem. 1967 Sep;242(18):4221–9.
  • 23. Cheng Y, Prusoff WH. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec;22(23):3099–108.
  • 24. Ellman GL, Courtney KD, Andres V, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95.
  • 25. Hunter R, Kaschula CH, Parker IM, Caira MR, Richards P, Travis S, Taute F, Qwebani T. Substituted ajoenes as novel anti-cancer agents. Bioorg Med Chem Lett. 2008 Oct;18(19):5277–9.
  • 26. Mboge MY, Mahon BP, McKenna R, Frost SC. Carbonic Anhydrases: Role in pH Control and Cancer. Metabolites. 2018 Feb;8(1):19.
  • 27. Prince MJ. World Alzheimer Report 2015: The Global Impact of Dementia [Internet]. 2015 [cited 2018 Nov 18]. Available from: https://www.alz.co.uk/research/world-report-2015

Inhibition of Carbonic Anhydrase, Acetylcholinesterase and Butyrylcholinesterase by BisPMB, A Synthetic Analogue of Ajoene

Yıl 2019, Cilt: 6 Sayı: 2, 143 - 148, 15.06.2019
https://doi.org/10.18596/jotcsa.484444

Öz

BisPMB (1,8-(bis-p-methoxyphenyl)-2,3,7-trithiaocta-4-ene 7-oxide) is a synthetic
analogue of the natural compound ajoene, which is a bioactive natural product
obtained from rearrangement of the unstable and reactive organosulfur compound
allicin produced when garlic is freshly crushed. BisPMB has been shown to have
superior cancer-cell cytotoxicity compared with ajoene and a modest selectivity
towards cancer cells over non-cancerous ones. In this study, the inhibition
effects of
E/Z-bisPMB and Z-bisPMB
against human carbonic anhydrase isozymes I and II (hCA I and II),
acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) were investigated
in which
E/Z-bisPMB and Z-bisPMB
showed similar inhibition profiles against the four enzymes tested, with the IC
50
values ranging from 10.9 to 439.7 nM and the
Ki values ranging from 5.4 to 195.4 nM. Furthermore, bisPMB
was more potent at inhibiting CA I, CA II and AChE compared with commercially
available inhibitors.

Kaynakça

  • 1. Block E. The Chemistry of Garlic and Onions. Sci Am. 1985 Mar;252(3):114–21.
  • 2. Hassan HT. Ajoene (natural garlic compound): a new anti-leukaemia agent for AML therapy. Leuk Res. 2004 Jul;28(7):667–71.
  • 3. Yoshida S, Kasuga S, Hayashi N, Ushiroguchi T, Matsuura H, Nakagawa S. Antifungal activity of ajoene derived from garlic. Appl Env Microbiol. 1987 Mar;53(3):615–7.
  • 4. Visbal G, San-Blas G, Murgich J, Franco H. Paracoccidioides brasiliensis, paracoccidioidomycosis, and antifungal antibiotics. Curr Drug Targets Infect Disord. 2005 Sep;5(3):211–26.
  • 5. Naganawa R, Iwata N, Ishikawa K, Fukuda H, Fujino T, Suzuki A. Inhibition of microbial growth by ajoene, a sulfur-containing compound derived from garlic. Appl Environ Microbiol. 1996 Nov;62(11):4238–42.
  • 6. Yang J-Y, Della-Fera MA, Nelson-Dooley C, Baile CA. Molecular mechanisms of apoptosis induced by ajoene in 3T3-L1 adipocytes. Obes Silver Spring Md. 2006 Mar;14(3):388–97.
  • 7. Powolny AA, Singh SV. Multitargeted prevention and therapy of cancer by diallyl trisulfide and related Allium vegetable-derived organosulfur compounds. Cancer Lett. 2008 Oct 8;269(2):305–14.
  • 8. Kumar S, Chatterjee S, Kumar S. Dual anti-cholinesterase activity of ajoene by In silico and In vitro studies. Pharmacogn Res. 2018 Apr;10(2):225-229.
  • 9. Kaschula CH, Hunter R, Stellenboom N, Caira MR, Winks S, Ogunleye T, Richards P, Cotton J, Zilbeyaz K, Wang Y, Siyo V, Ngarande E, Parker MI. Structure-activity studies on the anti-proliferation activity of ajoene analogues in WHCO1 oesophageal cancer cells. Eur J Med Chem. 2012 Apr;50:236–54.
  • 10. De Simone G, Di Fiore A, Capasso C, Supuran CT. The zinc coordination pattern in the η- carbonic anhydrase from Plasmodium falciparum is different from all other carbonic anhydrase genetic families. Bioorg Med Chem Lett. 2015 Apr;25(7):1385–9.
  • 11. Del Prete S, Vullo D, Fisher GM, Andrews KT, Poulsen S-A, Capasso C, Supuran CT. Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum--the η-carbonic anhydrases. Bioorg Med Chem Lett. 2014 Sep;24(18):4389–96.
  • 12. Ozensoy Guler O, Capasso C, Supuran CT. A magnificent enzyme superfamily: carbonic anhydrases, their purification and characterization. J Enzyme Inhib Med Chem. 2016 Oct;31(5):689–94.
  • 13. Supuran CT, Capasso C. Carbonic Anhydrase from Porphyromonas Gingivalis as a Drug Target. Pathog Basel Switz. 2017 Jul;6(3):30-43.
  • 14. Supuran CT, Scozzafava A, Casini A. Carbonic anhydrase inhibitors. Med Res Rev. 2003 Mar;23(2):146–89.
  • 15. Scozzafava A, Mastrolorenzo A, Supuran CT. Modulation of carbonic anhydrase activity and its applications in therapy. Expert Opin Ther Pat. 2004 May;14(5):667–702.
  • 16. Supuran CT. Therapeutic applications of the carbonic anhydrase inhibitors. Therapy. 2007 May;4(3):355–78.
  • 17. Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov. 2008 Feb;7(2):168–81.
  • 18. Supuran CT. How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem. 2016 Nov;31(3):345–60.
  • 19. Supuran CT. Carbonic anhydrase activators. Future Med Chem. 2018 Mar;10(5):561–73.
  • 20. García-Ayllón M-S, Small DH, Avila J, Sáez-Valero J. Revisiting the Role of Acetylcholinesterase in Alzheimer’s Disease: Cross-Talk with P-tau and β-Amyloid. Front Mol Neurosci. 2011 Sept;4:22.
  • 21. Bayram E, Senturk M, Kufrevioglu OI, Supuran CT. In vitro inhibition of salicylic acid derivatives on human cytosolic carbonic anhydrase isozymes I and II. Bioorg Med Chem. 2008 Oct;16(20):9101–5.
  • 22. Verpoorte JA, Mehta S, Edsall JT. Esterase activities of human carbonic anhydrases B and C. J Biol Chem. 1967 Sep;242(18):4221–9.
  • 23. Cheng Y, Prusoff WH. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec;22(23):3099–108.
  • 24. Ellman GL, Courtney KD, Andres V, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95.
  • 25. Hunter R, Kaschula CH, Parker IM, Caira MR, Richards P, Travis S, Taute F, Qwebani T. Substituted ajoenes as novel anti-cancer agents. Bioorg Med Chem Lett. 2008 Oct;18(19):5277–9.
  • 26. Mboge MY, Mahon BP, McKenna R, Frost SC. Carbonic Anhydrases: Role in pH Control and Cancer. Metabolites. 2018 Feb;8(1):19.
  • 27. Prince MJ. World Alzheimer Report 2015: The Global Impact of Dementia [Internet]. 2015 [cited 2018 Nov 18]. Available from: https://www.alz.co.uk/research/world-report-2015
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Makaleler
Yazarlar

Nashia Stellenboom 0000-0002-7405-2669

Yayımlanma Tarihi 15 Haziran 2019
Gönderilme Tarihi 16 Kasım 2018
Kabul Tarihi 5 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 6 Sayı: 2

Kaynak Göster

Vancouver Stellenboom N. Inhibition of Carbonic Anhydrase, Acetylcholinesterase and Butyrylcholinesterase by BisPMB, A Synthetic Analogue of Ajoene. JOTCSA. 2019;6(2):143-8.