Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 6 Sayı: 2, 245 - 252, 15.06.2019
https://doi.org/10.18596/jotcsa.547471

Öz

Kaynakça

  • 1. Jin Y, Li Z, Yang L, Xu J, Zhao L, Li Z, et al. Porous aromatic framework 48/gel hybrid material coated solid-phase microextraction fiber for the determination of the migration of styrene from polystyrene food contact materials. Analytical chemistry. 2017; 89(2): 1290-8.
  • 2. Liu W, Nie M, Wang Q. Polybutene-1 tube with in situ microfibering polystyrene via helical convergent flow: an economical pathway to continuously fabricate biaxially reinforced polyolefin tubes for medical application. RSC Advances. 2014; 4(88): 47793-6.
  • 3. Chen W, Hao H, Hughes D, Shi Y, Cui J, Li Z-X. Static and dynamic mechanical properties of expanded polystyrene. Materials & Design. 2015; 69: 170-80.
  • 4. Schmidt P, Cioffi M, Voorwald HJC, Silveira J. Flexural test on recycled polystyrene. Procedia Engineering. 2011; 10: 930-5.
  • 5. Lawania K, Sarker P. Global warming implications of the use of by-products and recycled materials in western Australia’s housing sector. Materials. 2015; 8(10): 6909-25.
  • 6. Kiatkamjornwong S, Sonsuk M, Wittayapichet S, Prasassarakich P, Vejjanukroh P-C. Degradation of styrene-g-cassava starch filled polystyrene plastics. Polymer Degradation and Stability. 1999; 66(3): 323-35.
  • 7. Park CI, Park OO, Lim JG, Kim HJ. The fabrication of syndiotactic polystyrene/organophilic clay nanocomposites and their properties. Polymer. 2001; 42(17): 7465-75.
  • 8. Yu S, Hing P, Hu X. Thermal conductivity of polystyrene–aluminum nitride composite. Composites Part A: applied science and manufacturing. 2002; 33(2): 289-92.
  • 9. McClory C, Pötschke P, McNally T. Influence of Screw Speed on Electrical and Rheological Percolation of Melt‐Mixed High‐Impact Polystyrene/MWCNT Nanocomposites. Macromolecular Materials and Engineering. 2011; 296(1): 59-69.
  • 10. Kahveci MU, Acik G, Yagci Y. Synthesis of Block Copolymers by Combination of Atom Transfer Radical Polymerization and Visible Light‐Induced Free Radical Promoted Cationic Polymerization. Macromolecular rapid communications. 2012; 33(4): 309-13.
  • 11. Acik G, Kahveci MU, Yagci Y. Synthesis of block copolymers by combination of atom transfer radical polymerization and visible light radical photopolymerization methods. Macromolecules. 2010; 43(21): 9198-201.
  • 12. Zhang Z, Chalkova E, Fedkin M, Wang C, Lvov SN, Komarneni S, et al. Synthesis and characterization of poly (vinylidene fluoride)-g-sulfonated polystyrene graft copolymers for proton exchange membrane. Macromolecules. 2008; 41(23): 9130-9.
  • 13. Muchtar Z, Schappacher M, Deffieux A. Hyperbranched nanomolecules: regular polystyrene dendrigrafts. Macromolecules. 2001; 34(22): 7595-600.
  • 14. Schappacher M, Deffieux A. New polymer chain architecture: synthesis and characterization of star polymers with comb polystyrene branches. Macromolecules. 2000; 33(20): 7371-7.
  • 15. Rzayev J. Synthesis of polystyrene− polylactide bottlebrush block copolymers and their melt self-assembly into large domain nanostructures. Macromolecules. 2009; 42(6): 2135-41.
  • 16. Xue Y, Xiao H, Zhang Y. Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. International journal of molecular sciences. 2015; 16(2): 3626-55.
  • 17. Tiller JC, Lee SB, Lewis K, Klibanov AM. Polymer surfaces derivatized with poly (vinyl‐N‐hexylpyridinium) kill airborne and waterborne bacteria. Biotechnology and bioengineering. 2002; 79(4): 465-71.
  • 18. Gao B, Zhang X, Zhu Y. Studies on the preparation and antibacterial properties of quaternized polyethyleneimine. Journal of Biomaterials Science, Polymer Edition. 2007; 18(5): 531-44.
  • 19. Matyjaszewski K. Atom transfer radical polymerization: from mechanisms to applications. Israel Journal of Chemistry. 2012; 52(3‐4): 206-20.
  • 20. Matyjaszewski K, Xia J. Atom transfer radical polymerization. Chemical reviews. 2001; 101(9): 2921-90.
  • 21. Acik G, Altinkok C, Olmez H, Tasdelen MA. Antibacterial film from chlorinated polypropylene via CuAAC click chemistry. Progress in Organic Coatings. 2018; 125: 73-8.
  • 22. Stoica D, Ogier L, Akrour L, Alloin F, Fauvarque J-F. Anionic membrane based on polyepichlorhydrin matrix for alkaline fuel cell: Synthesis, physical and electrochemical properties. Electrochimica Acta. 2007; 53(4): 1596-603.
  • 23. Ilhan F, Fabrizio EF, McCorkle L, Scheiman DA, Dass A, Palczer A, et al. Hydrophobic monolithic aerogels by nanocasting polystyrene on amine-modified silica. Journal of Materials Chemistry. 2006; 16(29): 3046-54.
  • 24. Tu Q, Wang J-C, Liu R, He J, Zhang Y, Shen S, et al. Antifouling properties of poly (dimethylsiloxane) surfaces modified with quaternized poly (dimethylaminoethyl methacrylate). Colloids and Surfaces B: Biointerfaces. 2013; 102: 361-70.
  • 25. Brown PS, Bhushan B. Mechanically durable liquid-impregnated honeycomb surfaces. Scientific reports. 2017; 7(1): 6083.

Study on the Synthesis and Characterization of Antibacterial Polystyrenes

Yıl 2019, Cilt: 6 Sayı: 2, 245 - 252, 15.06.2019
https://doi.org/10.18596/jotcsa.547471

Öz

In the present work,
a series of quaternized antibacterial polystyrenes (Anti-PSts) with various
molecular weights are synthesized and characterized. Initially, ω-bromo end functional
polystyrenes with different molecular
weights (PSt-Br-1, PSt-Br-2 and PSt-Br-2) are synthesized by atom transfer
radical polymerization (ATRP). Then, the ω–bromo functionalities of obtained PSt-Brs
are reacted with trimethylamine (TEA) to achieve corresponding antibacterial
properties. PSt-Brs and Anti-PSts produced are structurally characterized by Fourier
transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance
spectroscopy (1H-NMR), and gel permeation chromatography (GPC) at
various stages. Glass transition temperatures (Tg) of PSt-Brs and Anti-PSts are determined by differential
scanning calorimetry (DSC) analysis. Water contact angle measurement (WCA) is
employed for the wettability characterization studies of Anti-PSts. In addition,
antibacterial activity of final products against to Gram-positive (Staphylococcus aureus) and Gram-negative
(Escherichia coli) bacteria is elucidated
in terms of molecular weight and quaternization reaction time. 

Kaynakça

  • 1. Jin Y, Li Z, Yang L, Xu J, Zhao L, Li Z, et al. Porous aromatic framework 48/gel hybrid material coated solid-phase microextraction fiber for the determination of the migration of styrene from polystyrene food contact materials. Analytical chemistry. 2017; 89(2): 1290-8.
  • 2. Liu W, Nie M, Wang Q. Polybutene-1 tube with in situ microfibering polystyrene via helical convergent flow: an economical pathway to continuously fabricate biaxially reinforced polyolefin tubes for medical application. RSC Advances. 2014; 4(88): 47793-6.
  • 3. Chen W, Hao H, Hughes D, Shi Y, Cui J, Li Z-X. Static and dynamic mechanical properties of expanded polystyrene. Materials & Design. 2015; 69: 170-80.
  • 4. Schmidt P, Cioffi M, Voorwald HJC, Silveira J. Flexural test on recycled polystyrene. Procedia Engineering. 2011; 10: 930-5.
  • 5. Lawania K, Sarker P. Global warming implications of the use of by-products and recycled materials in western Australia’s housing sector. Materials. 2015; 8(10): 6909-25.
  • 6. Kiatkamjornwong S, Sonsuk M, Wittayapichet S, Prasassarakich P, Vejjanukroh P-C. Degradation of styrene-g-cassava starch filled polystyrene plastics. Polymer Degradation and Stability. 1999; 66(3): 323-35.
  • 7. Park CI, Park OO, Lim JG, Kim HJ. The fabrication of syndiotactic polystyrene/organophilic clay nanocomposites and their properties. Polymer. 2001; 42(17): 7465-75.
  • 8. Yu S, Hing P, Hu X. Thermal conductivity of polystyrene–aluminum nitride composite. Composites Part A: applied science and manufacturing. 2002; 33(2): 289-92.
  • 9. McClory C, Pötschke P, McNally T. Influence of Screw Speed on Electrical and Rheological Percolation of Melt‐Mixed High‐Impact Polystyrene/MWCNT Nanocomposites. Macromolecular Materials and Engineering. 2011; 296(1): 59-69.
  • 10. Kahveci MU, Acik G, Yagci Y. Synthesis of Block Copolymers by Combination of Atom Transfer Radical Polymerization and Visible Light‐Induced Free Radical Promoted Cationic Polymerization. Macromolecular rapid communications. 2012; 33(4): 309-13.
  • 11. Acik G, Kahveci MU, Yagci Y. Synthesis of block copolymers by combination of atom transfer radical polymerization and visible light radical photopolymerization methods. Macromolecules. 2010; 43(21): 9198-201.
  • 12. Zhang Z, Chalkova E, Fedkin M, Wang C, Lvov SN, Komarneni S, et al. Synthesis and characterization of poly (vinylidene fluoride)-g-sulfonated polystyrene graft copolymers for proton exchange membrane. Macromolecules. 2008; 41(23): 9130-9.
  • 13. Muchtar Z, Schappacher M, Deffieux A. Hyperbranched nanomolecules: regular polystyrene dendrigrafts. Macromolecules. 2001; 34(22): 7595-600.
  • 14. Schappacher M, Deffieux A. New polymer chain architecture: synthesis and characterization of star polymers with comb polystyrene branches. Macromolecules. 2000; 33(20): 7371-7.
  • 15. Rzayev J. Synthesis of polystyrene− polylactide bottlebrush block copolymers and their melt self-assembly into large domain nanostructures. Macromolecules. 2009; 42(6): 2135-41.
  • 16. Xue Y, Xiao H, Zhang Y. Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. International journal of molecular sciences. 2015; 16(2): 3626-55.
  • 17. Tiller JC, Lee SB, Lewis K, Klibanov AM. Polymer surfaces derivatized with poly (vinyl‐N‐hexylpyridinium) kill airborne and waterborne bacteria. Biotechnology and bioengineering. 2002; 79(4): 465-71.
  • 18. Gao B, Zhang X, Zhu Y. Studies on the preparation and antibacterial properties of quaternized polyethyleneimine. Journal of Biomaterials Science, Polymer Edition. 2007; 18(5): 531-44.
  • 19. Matyjaszewski K. Atom transfer radical polymerization: from mechanisms to applications. Israel Journal of Chemistry. 2012; 52(3‐4): 206-20.
  • 20. Matyjaszewski K, Xia J. Atom transfer radical polymerization. Chemical reviews. 2001; 101(9): 2921-90.
  • 21. Acik G, Altinkok C, Olmez H, Tasdelen MA. Antibacterial film from chlorinated polypropylene via CuAAC click chemistry. Progress in Organic Coatings. 2018; 125: 73-8.
  • 22. Stoica D, Ogier L, Akrour L, Alloin F, Fauvarque J-F. Anionic membrane based on polyepichlorhydrin matrix for alkaline fuel cell: Synthesis, physical and electrochemical properties. Electrochimica Acta. 2007; 53(4): 1596-603.
  • 23. Ilhan F, Fabrizio EF, McCorkle L, Scheiman DA, Dass A, Palczer A, et al. Hydrophobic monolithic aerogels by nanocasting polystyrene on amine-modified silica. Journal of Materials Chemistry. 2006; 16(29): 3046-54.
  • 24. Tu Q, Wang J-C, Liu R, He J, Zhang Y, Shen S, et al. Antifouling properties of poly (dimethylsiloxane) surfaces modified with quaternized poly (dimethylaminoethyl methacrylate). Colloids and Surfaces B: Biointerfaces. 2013; 102: 361-70.
  • 25. Brown PS, Bhushan B. Mechanically durable liquid-impregnated honeycomb surfaces. Scientific reports. 2017; 7(1): 6083.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Polimer Bilimi ve Teknolojileri
Bölüm Makaleler
Yazarlar

Gokhan Acik 0000-0002-9427-0508

Yayımlanma Tarihi 15 Haziran 2019
Gönderilme Tarihi 1 Nisan 2019
Kabul Tarihi 16 Mayıs 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 6 Sayı: 2

Kaynak Göster

Vancouver Acik G. Study on the Synthesis and Characterization of Antibacterial Polystyrenes. JOTCSA. 2019;6(2):245-52.