Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Dozlardaki Gonadotropinlerin Ovaryum Follikül Sayıları Üzerine Etkisi

Yıl 2019, Cilt: 38 Sayı: 1, 39 - 45, 18.07.2019
https://doi.org/10.30782/uluvfd.416847

Öz

The aim of our study is to determine the effect of PMSG and following hCG administration to seven-week-old mice follicle development
and corpus luteum formation by statistically methods. Seven-week-old, fourty BALB/c breed female mice were used in this study. Mice were
divided in to four groups randomly, and 0,2 ml buffer saline was injected to control group. PMSG hormone was administrated at doses of
2,5; 5 and 7,5 I.U. respectively to other three groups. hCG was injected 2,5; 5 and 7,5 I.U. subcutaneous doses respectively to the experiment
groups after 48 hours later than PMSG administration and 0,2 ml buffer saline was injected subcutaneously to control group. Ovaries were
collected and fixed for histological examination and Crossmon’s triple staining method was applied for examination of follicle and corpus
luteum developments in all experiment groups were more than control group. First experiment group had the most developing follicle number,
followed by third and second experiment group respectively and at least control group. When corpus luteums were evaluated in terms
of ovulation, it was seen that the third, second and first experiment groups were the most respectively and the control was the least. In all
procedures, follicular development and ovulation were increased depending on the applied dose of gonadotropin. As a result of this study; it
was decided, third experimental group had the most number of corpus luteum formation (7,5 I.U. PMSG and following 7,5 I.U. hCG subcutanous
administration) was the most appropriate superovulation procedure for BALB/c breed female mice.

Kaynakça

  • 1.Nagy A, Gertsenstein M, Vintersten K, et al. Manipulating the mouse embryo: A laboratory manual, 3rd Ed., Cold Spring Harbor Laboratory Press, Chapter 14. 2002.
  • 2. Gates AH. Maximizing yield and developmental uniformity of eggs. In. Daniel Jr JC.(Eds.), Methods in mammalian embryology. WH Freeman & Co, San Francisco, 1971: 64-76.
  • 3. Brooke DA, Orsi NM, Ainscough JFX, et al. Human menopausal and pregnant mare serum gonadotrophins in murine superovulation regimens for transgenic applications. Theriogenology, 2007; 62: 1409– 1413.
  • 4. Kanter M, Yıldız C, Meral I, et al. Effects of a GnRH agonist on oocyte number and maturation in mice superovulated with eCG and hCG. Theriogenology, 2004; 61 (2-3): 393–398.
  • 5. Narai K, Ishinazaka T, Suzuki K, et al. Optimum dose of LH–RH analogue fertirelin acetate for the induction of superovulation in mice. Exp Anim. 2005; 54(1): 97– 99.
  • 6. Fowler RE, Edward RG. Induction of superovulation and pregnancy in mature mice by gonadotrophins. J Endocrinol. 1957; 15: 374–384.
  • 7. Edward RG, Fowler RE. Superovulation treatment of adult mice: their subsequent natural fertility and response to further treatment. J Endocrinol. 1960; 21: 147–154.
  • 8. McLaren A and Michie D. Superpregnancy in the mouse. In. Implantation and foetal mortality after induced superovulation in females of various ages. J Exp Biol. 1958; 36: 281-300.
  • 9. Rachael Pasco A, David K, Gardner B, et al. Superovulation protocol for the spiny Mouse (Acomys cahirinus). Reprod Fertil Dev. 2012; 24: 1117–112,.
  • 10. Martin-Coello J, Gonzalez R, Crespo C, et al. Superovulation and in vitro oocyte maturation in three species of mice (Mus musculus, Mus spretus and Mus spicilegus). Theriogenology. 2008; 70 (6): 1004- 13.
  • 11. Zudova D, Wyrobek AJ, Bishop J, et al. Impaired fertility in Tstock female mice after superovulation. Reproduction. 2004; 128: 573-581.
  • 12. Başar M, Türker M, İrez T, et al. Süperovulasyon protokolünde kullanılan GnRH agonistinin oosit olgunluğu ve çapına etkileri, Cerrahpasa Tip Fak Der. 2008; 39 (2): 41-48.
  • 13. Heidar IF, Sadrkhanlou R, Rastegarnıa A et al. Effect of different protocol of ovarian stimulation, with gonadotrophin on concentration of ovarian hormones. J Anim Vet Adv. 2009; 8 (12): 2429-31.
  • 14. Mc Donald LE. The pituitary gland. In. LE Mc Donald (Ed.), Veterinary Endocrinology and Reproduction, Lea & Febiger, Philadelphia. 1980.
  • 15. Yoshimura Y, Hosoi Y, Atlas SI, et al. Effect of the exposure of intro follicular oocytes to clomiphene citrate on prefnancy outcome in the rabbits. Fertil Steril. 1988; 50 (1): 153-158.
  • 16. Socie G, Salooja N, Cohen A, et al. Nonmalignant late effects after allogeneic stem cell transplantation. Blood. 2003; 101: 3373–3385.
  • 17. Chang P, Kenley S, Burns T, et al. Recombinant human chorionic gonadotropin (rhCG) in assisted reproductive technology: results of a clinical trial comparing two doses of rhCG (Ovidrel) to urinary hCG (Profasi) for induction of final follicular maturation in in vitro fertilization-embryo transfer. Fertil Steril. 2001; 76: 67–74.
  • 18. Yavuz Ö. Glikoproteinler ve biyomedikal önemi. Turkiye Klinikleri J Med Sci. 2001; 21: 517-522.
  • 19. Hedrick JL. Comparative structural and antigenic properties of zona pellucida glycoproteins. J Reprod Fertil Suppl. 1996; 50: 9-17.
  • 20. AI-Shebaily MM. Evaluation of the effects of pregynl on pituitary-ovarian hormones and biochemical markers of tissue injury in female Swiss albino mice. Pancaroğlu ve ark. 2019 45 Res Commun Mol Pathol Pharmacol. 1999; 105 (1-2): 155-171.
  • 21. Crossmon CA. Modification of Mallory’s connective tissue stain with a discussion of the principles involved. Anat Rec. 69: 33-38, 1937.
  • 22. Parrot JA, Skinner MK. Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinol. 1999; 140 (9): 4262-71.
  • 23. Oktay K, Schenken RS, Nelson JF. Proliferating cell nuclear antigen marks the initiation of follicular growth in the rat. Biol Reprod. 1995; 53: 295-301.
  • 24. Sümbüloğlu K, Sümbüloğlu U, Biyoistatistik, Özdemir Yayıncılık, Ankara. 1994.
  • 25. Greenwald GS, Terranova PF, The Physiology of Reproduction, Raven Press Ltd, New York. 1988.
  • 26. Fauser BC and Devroey P. Reproductive biology and IVF: ovarian stimulation and luteal phase consequences. Trends Endocrinol Metab. 2003; 14 (5): 236-42.
  • 27. Oehninger S, Hodgen GD. Induction of ovulation for assisted reproduction programmes. Baillieres Clin Obstet Gynaecol. 1990; 4 (3): 541- 73.
  • 28. Trounson A, Mohr L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature. 1983, 305 (5936): 707- 9.
  • 29. Zeilmaker GH, Alberda AT, Van Gent I, et al. Two pregnancies following transfer of intact frozen-thawed embryos. Fertil Steril. 1984; 42 (2): 293-296.
  • 30. Fauser BC, Devroey P, Yen SS, et al. Minimal ovarian stimulation for IVF: Appraisal of potential benefits and drawbacks. Hum Reprod. 1999; 14 (11): 2681-6.
  • 31. Flaws JA, Abbud R, Mann RJ, et al. Chronically elevated luteinizing hormone depletes primordiyal follicles in the mouse ovary. Biol Reprod. 1997; 57 (5): 1233- 7.
  • 32. Meredith S, Kirkpatrick-Keller D, Butcher RL. The effects of food restriction and hypophysectomy on numbers of primordiyal follicles and concentrations of hormones in rats. Biol Reprod. 1986; 35(1): 68-73.
  • 33. Lehtonen E and Kankondi R. Rate of gonadotrophin- indueed abnormalities in mouse ova is related to the site of hormone administration. J Reprod Fertil. 1987; 80: 613-617.
  • 34. Barnes RB, Namnoum AB, Rosenfield RI, et al. The role of LH and FSH in ovarian androgen secretion and ovarian follicular development: clinical studies in a patient with isolated FSH deficiency and multicystic ovaries. Hum Reprod. 2002; 17 (1): 88-91.
  • 35. Stern S, Schuertz W. Asynchrony of ovulation and mating in mice treated with gonadotropins. J Reprod Fertil. 1970; 23: 257-261.
  • 36. Pasco R, Gardner DK, Walker DW, et al. A superovulation protocol for the spiny Mouse (Acomys cahirinus). Reprod Fertil Dev. 2012; 24 (8): 1117–1122.
  • 37. Neal P and Challoner S. The development of the mouse ovary and its response to exogenous gonadotrophins. J Reprod Fertil. 1975; 45 (3): 449-454.
Yıl 2019, Cilt: 38 Sayı: 1, 39 - 45, 18.07.2019
https://doi.org/10.30782/uluvfd.416847

Öz

Teşekkür

Bu araştırma Uludağ Üniversitesi-Bilimsel Araştırma Projeleri Birimi tarafından desteklenmiştir (Proje No HDP(V) 2012/37).

Kaynakça

  • 1.Nagy A, Gertsenstein M, Vintersten K, et al. Manipulating the mouse embryo: A laboratory manual, 3rd Ed., Cold Spring Harbor Laboratory Press, Chapter 14. 2002.
  • 2. Gates AH. Maximizing yield and developmental uniformity of eggs. In. Daniel Jr JC.(Eds.), Methods in mammalian embryology. WH Freeman & Co, San Francisco, 1971: 64-76.
  • 3. Brooke DA, Orsi NM, Ainscough JFX, et al. Human menopausal and pregnant mare serum gonadotrophins in murine superovulation regimens for transgenic applications. Theriogenology, 2007; 62: 1409– 1413.
  • 4. Kanter M, Yıldız C, Meral I, et al. Effects of a GnRH agonist on oocyte number and maturation in mice superovulated with eCG and hCG. Theriogenology, 2004; 61 (2-3): 393–398.
  • 5. Narai K, Ishinazaka T, Suzuki K, et al. Optimum dose of LH–RH analogue fertirelin acetate for the induction of superovulation in mice. Exp Anim. 2005; 54(1): 97– 99.
  • 6. Fowler RE, Edward RG. Induction of superovulation and pregnancy in mature mice by gonadotrophins. J Endocrinol. 1957; 15: 374–384.
  • 7. Edward RG, Fowler RE. Superovulation treatment of adult mice: their subsequent natural fertility and response to further treatment. J Endocrinol. 1960; 21: 147–154.
  • 8. McLaren A and Michie D. Superpregnancy in the mouse. In. Implantation and foetal mortality after induced superovulation in females of various ages. J Exp Biol. 1958; 36: 281-300.
  • 9. Rachael Pasco A, David K, Gardner B, et al. Superovulation protocol for the spiny Mouse (Acomys cahirinus). Reprod Fertil Dev. 2012; 24: 1117–112,.
  • 10. Martin-Coello J, Gonzalez R, Crespo C, et al. Superovulation and in vitro oocyte maturation in three species of mice (Mus musculus, Mus spretus and Mus spicilegus). Theriogenology. 2008; 70 (6): 1004- 13.
  • 11. Zudova D, Wyrobek AJ, Bishop J, et al. Impaired fertility in Tstock female mice after superovulation. Reproduction. 2004; 128: 573-581.
  • 12. Başar M, Türker M, İrez T, et al. Süperovulasyon protokolünde kullanılan GnRH agonistinin oosit olgunluğu ve çapına etkileri, Cerrahpasa Tip Fak Der. 2008; 39 (2): 41-48.
  • 13. Heidar IF, Sadrkhanlou R, Rastegarnıa A et al. Effect of different protocol of ovarian stimulation, with gonadotrophin on concentration of ovarian hormones. J Anim Vet Adv. 2009; 8 (12): 2429-31.
  • 14. Mc Donald LE. The pituitary gland. In. LE Mc Donald (Ed.), Veterinary Endocrinology and Reproduction, Lea & Febiger, Philadelphia. 1980.
  • 15. Yoshimura Y, Hosoi Y, Atlas SI, et al. Effect of the exposure of intro follicular oocytes to clomiphene citrate on prefnancy outcome in the rabbits. Fertil Steril. 1988; 50 (1): 153-158.
  • 16. Socie G, Salooja N, Cohen A, et al. Nonmalignant late effects after allogeneic stem cell transplantation. Blood. 2003; 101: 3373–3385.
  • 17. Chang P, Kenley S, Burns T, et al. Recombinant human chorionic gonadotropin (rhCG) in assisted reproductive technology: results of a clinical trial comparing two doses of rhCG (Ovidrel) to urinary hCG (Profasi) for induction of final follicular maturation in in vitro fertilization-embryo transfer. Fertil Steril. 2001; 76: 67–74.
  • 18. Yavuz Ö. Glikoproteinler ve biyomedikal önemi. Turkiye Klinikleri J Med Sci. 2001; 21: 517-522.
  • 19. Hedrick JL. Comparative structural and antigenic properties of zona pellucida glycoproteins. J Reprod Fertil Suppl. 1996; 50: 9-17.
  • 20. AI-Shebaily MM. Evaluation of the effects of pregynl on pituitary-ovarian hormones and biochemical markers of tissue injury in female Swiss albino mice. Pancaroğlu ve ark. 2019 45 Res Commun Mol Pathol Pharmacol. 1999; 105 (1-2): 155-171.
  • 21. Crossmon CA. Modification of Mallory’s connective tissue stain with a discussion of the principles involved. Anat Rec. 69: 33-38, 1937.
  • 22. Parrot JA, Skinner MK. Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinol. 1999; 140 (9): 4262-71.
  • 23. Oktay K, Schenken RS, Nelson JF. Proliferating cell nuclear antigen marks the initiation of follicular growth in the rat. Biol Reprod. 1995; 53: 295-301.
  • 24. Sümbüloğlu K, Sümbüloğlu U, Biyoistatistik, Özdemir Yayıncılık, Ankara. 1994.
  • 25. Greenwald GS, Terranova PF, The Physiology of Reproduction, Raven Press Ltd, New York. 1988.
  • 26. Fauser BC and Devroey P. Reproductive biology and IVF: ovarian stimulation and luteal phase consequences. Trends Endocrinol Metab. 2003; 14 (5): 236-42.
  • 27. Oehninger S, Hodgen GD. Induction of ovulation for assisted reproduction programmes. Baillieres Clin Obstet Gynaecol. 1990; 4 (3): 541- 73.
  • 28. Trounson A, Mohr L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature. 1983, 305 (5936): 707- 9.
  • 29. Zeilmaker GH, Alberda AT, Van Gent I, et al. Two pregnancies following transfer of intact frozen-thawed embryos. Fertil Steril. 1984; 42 (2): 293-296.
  • 30. Fauser BC, Devroey P, Yen SS, et al. Minimal ovarian stimulation for IVF: Appraisal of potential benefits and drawbacks. Hum Reprod. 1999; 14 (11): 2681-6.
  • 31. Flaws JA, Abbud R, Mann RJ, et al. Chronically elevated luteinizing hormone depletes primordiyal follicles in the mouse ovary. Biol Reprod. 1997; 57 (5): 1233- 7.
  • 32. Meredith S, Kirkpatrick-Keller D, Butcher RL. The effects of food restriction and hypophysectomy on numbers of primordiyal follicles and concentrations of hormones in rats. Biol Reprod. 1986; 35(1): 68-73.
  • 33. Lehtonen E and Kankondi R. Rate of gonadotrophin- indueed abnormalities in mouse ova is related to the site of hormone administration. J Reprod Fertil. 1987; 80: 613-617.
  • 34. Barnes RB, Namnoum AB, Rosenfield RI, et al. The role of LH and FSH in ovarian androgen secretion and ovarian follicular development: clinical studies in a patient with isolated FSH deficiency and multicystic ovaries. Hum Reprod. 2002; 17 (1): 88-91.
  • 35. Stern S, Schuertz W. Asynchrony of ovulation and mating in mice treated with gonadotropins. J Reprod Fertil. 1970; 23: 257-261.
  • 36. Pasco R, Gardner DK, Walker DW, et al. A superovulation protocol for the spiny Mouse (Acomys cahirinus). Reprod Fertil Dev. 2012; 24 (8): 1117–1122.
  • 37. Neal P and Challoner S. The development of the mouse ovary and its response to exogenous gonadotrophins. J Reprod Fertil. 1975; 45 (3): 449-454.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Veteriner Cerrahi
Bölüm Research Articles
Yazarlar

Guzin Pancaroglu Bu kişi benim 0000-0003-3515-3552

Tuncay Ilhan 0000-0002-7327-9319

Hatice Erdost 0000-0003-1547-7293

Yayımlanma Tarihi 18 Temmuz 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 38 Sayı: 1

Kaynak Göster

APA Pancaroglu, G., Ilhan, T., & Erdost, H. (2019). Farklı Dozlardaki Gonadotropinlerin Ovaryum Follikül Sayıları Üzerine Etkisi. Journal of Research in Veterinary Medicine, 38(1), 39-45. https://doi.org/10.30782/uluvfd.416847
AMA Pancaroglu G, Ilhan T, Erdost H. Farklı Dozlardaki Gonadotropinlerin Ovaryum Follikül Sayıları Üzerine Etkisi. J Res Vet Med. Temmuz 2019;38(1):39-45. doi:10.30782/uluvfd.416847
Chicago Pancaroglu, Guzin, Tuncay Ilhan, ve Hatice Erdost. “Farklı Dozlardaki Gonadotropinlerin Ovaryum Follikül Sayıları Üzerine Etkisi”. Journal of Research in Veterinary Medicine 38, sy. 1 (Temmuz 2019): 39-45. https://doi.org/10.30782/uluvfd.416847.
EndNote Pancaroglu G, Ilhan T, Erdost H (01 Temmuz 2019) Farklı Dozlardaki Gonadotropinlerin Ovaryum Follikül Sayıları Üzerine Etkisi. Journal of Research in Veterinary Medicine 38 1 39–45.
IEEE G. Pancaroglu, T. Ilhan, ve H. Erdost, “Farklı Dozlardaki Gonadotropinlerin Ovaryum Follikül Sayıları Üzerine Etkisi”, J Res Vet Med, c. 38, sy. 1, ss. 39–45, 2019, doi: 10.30782/uluvfd.416847.
ISNAD Pancaroglu, Guzin vd. “Farklı Dozlardaki Gonadotropinlerin Ovaryum Follikül Sayıları Üzerine Etkisi”. Journal of Research in Veterinary Medicine 38/1 (Temmuz 2019), 39-45. https://doi.org/10.30782/uluvfd.416847.
JAMA Pancaroglu G, Ilhan T, Erdost H. Farklı Dozlardaki Gonadotropinlerin Ovaryum Follikül Sayıları Üzerine Etkisi. J Res Vet Med. 2019;38:39–45.
MLA Pancaroglu, Guzin vd. “Farklı Dozlardaki Gonadotropinlerin Ovaryum Follikül Sayıları Üzerine Etkisi”. Journal of Research in Veterinary Medicine, c. 38, sy. 1, 2019, ss. 39-45, doi:10.30782/uluvfd.416847.
Vancouver Pancaroglu G, Ilhan T, Erdost H. Farklı Dozlardaki Gonadotropinlerin Ovaryum Follikül Sayıları Üzerine Etkisi. J Res Vet Med. 2019;38(1):39-45.