Year 2016, Volume , Issue 2, Pages 1 - 15 2016-04-30

What is Conditional Probability? In Defense of Lowe’s Definition(s)
What is Conditional Probability? In Defense of Lowe’s Definition(s)

Hilmi Demir [1]

46 101

Standard Olasılık kuramında bir olayın bir diğer olaya koşullu olasılığı rasyo formülü olarak bilinen bir formül ile tanımlanmaktadır. Bu formüle göre B olayının A olayına koşullu olasılığı (A ve B) olayının olasığının sadece A olayının olasılığına bölünmesi ile bulunan değerdir. Bu standard tanımın özellikle limitlerdeki olasılık değerleri için kavramsal ve matematiksel beklentilerimizi karşılamadığı bilinen bir durumdur. Aralarında Popper ve Hájek gibi isimlerin de bulunduğu birçok felsefecinin de belirttiği gibi, bu durumdan elimizde tatmin edici bir koşullu olasılık tanımı olmadığını çıkarsamak yanlış olmayacaktır. E.J. Lowe, Dorothy Edgington ile girdiği bir tartışma bağlamında koşullu olasılığın iki alternatif tanımını önermiştir. Ne yazık ki, literatürde bu tanımlara gereken önem verilmemiştir. Literatürdeki bu eksikliği gidermeyi hedefleyen bu makalenin genel amacı, Lowe’ün önerilerinin tatmin edici bir koşullu olasılık tanımı sunma potansiyeline sahip olduğunu  göstermektir. 

In the standard and traditional view, the concept of conditional probability is defined with what is known as the ratio formula: the probability of B given A is the ratio between the probability of A and B and the probability of A. It is well known that this definition does not match the conceptual and mathematical expectations that we have from conditional probability, especially for the probability values at the limits. Thus, as pointed out by several philosophers such as Popper and Hájek, it is fair to conclude that we have yet to have a satisfactory definition for the concept of conditional probability. E.J. Lowe, in a debate with Dorothy Edgington, proposed two different definitions of conditional probability, and unfortunately his definitions have gone unnoticed in the literature. In this paper, my main aim is to renew interest in Lowe’s definitions. I achieve this aim by showing that E.J. Lowe’s definitions have great potential in providing us with a satisfactory definition of conditional probability.

  • Bayes, Thomas. (1764). An Essay Towards Solving a Problem in the Doctrine of Chances. Philosophical Transactions of the Royal Society of London 53, pp. 37-418.
  • Fitelson, Brandon and Hájek, A. (2014). Declarations of Independence. Synthese. 10.1007/s11229-014-0559-2.
  • Hájek, Alan. (2003). What Conditional Probability Could Not Be. Synthese 137, pp. 273-323.
  • Hájek, Alan. (2010). A Plea for the Improbable. AAP presidential address.
  • Hájek, Alan. (2011). Conditional Probability. Handbook of the Philosophy of Science, Volume 7: Philosophy of Statistics, Eds. Prasanta S. Bandyopadhyay and Malcolm R. Forster. pp. 99-137.
  • Kolmogorov, A. N. (1933/1950). Grundbegriffe der Wahrscheinlichkeitrechnung, Ergebnisse Der Mathematik. Translated as Foundations of Probability. New York: Chelsea Publishing Company.
  • Lewis, D.K. (1976). Probabilities of Conditionals and Conditional Probabilities. Philosophical Review 85, pp. 297-315.
  • Lowe, E. J. (1996). Conditional Probability and Conditional Beliefs. Mind 105, pp. 603–15.
  • Edgington, Dorothy. (1995). On Conditionals. Mind 104. pp. 235–329.
  • Edgington, Dorothy. (1996). Lowe on Conditional Probability. Mind 105, pp. 617– 30.
  • Gärdenfors, Peter. (1982). Imaging and Conditionalization. Journal of Philosophy 79, pp. 747-60.
  • Popper, Karl. (1959). The Logic of Scientific Discovery, Basic Books.
  • Williams, P.M. (1980). Bayesian Conditionalisation and the Principle of Minimum Information. British Journal for the Philosophy of Science 31 (2), pp. 131-44.
Subjects Social
Journal Section Makaleler
Authors

Author: Hilmi Demir

Bibtex @research article { kilikya356252, journal = {Kilikya Felsefe Dergisi}, issn = {}, eissn = {2148-9327}, address = {Mersin University}, year = {2016}, volume = {}, pages = {1 - 15}, doi = {}, title = {What is Conditional Probability? In Defense of Lowe’s Definition(s)}, key = {cite}, author = {Demir, Hilmi} }
APA Demir, H . (2016). What is Conditional Probability? In Defense of Lowe’s Definition(s). Kilikya Felsefe Dergisi, (2), 1-15. Retrieved from http://dergipark.org.tr/kilikya/issue/31934/356252
MLA Demir, H . "What is Conditional Probability? In Defense of Lowe’s Definition(s)". Kilikya Felsefe Dergisi (2016): 1-15 <http://dergipark.org.tr/kilikya/issue/31934/356252>
Chicago Demir, H . "What is Conditional Probability? In Defense of Lowe’s Definition(s)". Kilikya Felsefe Dergisi (2016): 1-15
RIS TY - JOUR T1 - What is Conditional Probability? In Defense of Lowe’s Definition(s) AU - Hilmi Demir Y1 - 2016 PY - 2016 N1 - DO - T2 - Kilikya Felsefe Dergisi JF - Journal JO - JOR SP - 1 EP - 15 VL - IS - 2 SN - -2148-9327 M3 - UR - Y2 - 2019 ER -
EndNote %0 Cilicia Journal of Philosophy What is Conditional Probability? In Defense of Lowe’s Definition(s) %A Hilmi Demir %T What is Conditional Probability? In Defense of Lowe’s Definition(s) %D 2016 %J Kilikya Felsefe Dergisi %P -2148-9327 %V %N 2 %R %U
ISNAD Demir, Hilmi . "What is Conditional Probability? In Defense of Lowe’s Definition(s)". Kilikya Felsefe Dergisi / 2 (April 2016): 1-15.