Year 2019, Volume 7, Issue 1, Pages 168 - 174 2019-04-15

Some Additive Inequalities for Heinz Operator Mean

Sever Dragomir [1]

32 111

In this paper we obtain some new additive inequalities for Heinz operator mean, namely the operator $H_{\nu }\left( A,B\right) :=\frac{1}{2}\left( A\sharp _{\nu }B+A\sharp _{1-\nu }B\right) $ where $A\sharp _{\nu }B:=A^{1/2}\left( A^{-1/2}BA^{-1/2}\right) ^{\nu }A^{1/2}$ is the weighted geometric mean for the positive invertible operators $A$ and $B,$ and $\nu \in \left[ 0,1\right] .$



Young’s Inequality, Real functions, Arithmetic mean-Geometric mean inequality
  • [1] S. S. Dragomir, Some new reverses of Young’s operator inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 130. [http://rgmia.org/papers/v18/v18a130.pdf].
  • [2] S. S. Dragomir, On new refinements and reverses of Young’s operator inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 135. [http://rgmia.org/papers/v18/v18a135.pdf].
  • [3] S. S. Dragomir, Some inequalities for operator weighted geometric mean, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 139. [http://rgmia.org/papers/v18/v18a139.pdf ].
  • [4] S. S. Dragomir, Refinements and reverses of Holder-McCarthy operator inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 143. [http://rgmia.org/papers/v18/v18a143.pdf].
  • [5] S. S. Dragomir, Some reverses and a refinement of H¨older operator inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 147. [http://rgmia.org/papers/v18/v18a147.pdf].
  • [6] S. S. Dragomir, Some inequalities for Heinz operator mean, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 163. [Online http://rgmia.org/papers/v18/v18a163.pdf].
  • [7] S. S. Dragomir, Further inequalities for Heinz operator mean, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 167. [Online http://rgmia.org/papers/v18/v18a167.pdf].
  • [8] S. Furuichi, On refined Young inequalities and reverse inequalities, J. Math. Inequal. 5 (2011), 21-31.
  • [9] S. Furuichi, Refined Young inequalities with Specht’s ratio, J. Egyptian Math. Soc. 20 (2012), 46–49.
  • [10] F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl. 361 (2010), 262-269.
  • [11] F. Kittaneh and Y. Manasrah, Reverse Young and Heinz inequalities for matrices, Lin. Multilin. Alg., 59 (2011), 1031-1037.
  • [12] F. Kittaneh, M. Krnic, N. Lovricevic and J. Pecaric, Improved arithmetic-geometric and Heinz means inequalities for Hilbert space operators, Publ. Math. Debrecen, 2012, 80(3-4), 465–478.
  • [13] M. Krnic and J. Pecaric, Improved Heinz inequalities via the Jensen functional, Cent. Eur. J. Math. 11 (9) 2013,1698-1710.
  • [14] F. Kubo and T. Ando, Means of positive operators, Math. Ann. 264 (1980), 205–224.
  • [15] W. Liao, J. Wu and J. Zhao, New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, Taiwanese J. Math. 19 (2015), No. 2, pp. 467-479.
  • [16] W. Specht, Zer Theorie der elementaren Mittel, Math. Z. 74 (1960), pp. 91-98.
  • [17] M. Tominaga, Specht’s ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583-588.H.
  • [18] G. Zuo, G. Shi and M. Fujii, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5 (2011), 551-556.
Primary Language en
Subjects Engineering
Journal Section Articles
Authors

Author: Sever Dragomir (Primary Author)
Institution: School of Engineering and Science, Victoria University, PO Box 14428, Melbourne City 8001, VIC, Australia
Country: Australia


Dates

Publication Date: April 15, 2019

Bibtex @research article { konuralpjournalmath417949, journal = {Konuralp Journal of Mathematics (KJM)}, issn = {}, eissn = {2147-625X}, address = {Mehmet Zeki SARIKAYA}, year = {2019}, volume = {7}, pages = {168 - 174}, doi = {}, title = {Some Additive Inequalities for Heinz Operator Mean}, key = {cite}, author = {Dragomir, Sever} }
APA Dragomir, S . (2019). Some Additive Inequalities for Heinz Operator Mean. Konuralp Journal of Mathematics (KJM), 7 (1), 168-174. Retrieved from http://dergipark.org.tr/konuralpjournalmath/issue/31492/417949
MLA Dragomir, S . "Some Additive Inequalities for Heinz Operator Mean". Konuralp Journal of Mathematics (KJM) 7 (2019): 168-174 <http://dergipark.org.tr/konuralpjournalmath/issue/31492/417949>
Chicago Dragomir, S . "Some Additive Inequalities for Heinz Operator Mean". Konuralp Journal of Mathematics (KJM) 7 (2019): 168-174
RIS TY - JOUR T1 - Some Additive Inequalities for Heinz Operator Mean AU - Sever Dragomir Y1 - 2019 PY - 2019 N1 - DO - T2 - Konuralp Journal of Mathematics (KJM) JF - Journal JO - JOR SP - 168 EP - 174 VL - 7 IS - 1 SN - -2147-625X M3 - UR - Y2 - 2018 ER -
EndNote %0 Konuralp Journal of Mathematics (KJM) Some Additive Inequalities for Heinz Operator Mean %A Sever Dragomir %T Some Additive Inequalities for Heinz Operator Mean %D 2019 %J Konuralp Journal of Mathematics (KJM) %P -2147-625X %V 7 %N 1 %R %U
ISNAD Dragomir, Sever . "Some Additive Inequalities for Heinz Operator Mean". Konuralp Journal of Mathematics (KJM) 7 / 1 (April 2019): 168-174.
AMA Dragomir S . Some Additive Inequalities for Heinz Operator Mean. Konuralp J. Math.. 2019; 7(1): 168-174.
Vancouver Dragomir S . Some Additive Inequalities for Heinz Operator Mean. Konuralp Journal of Mathematics (KJM). 2019; 7(1): 174-168.