Year 2019, Volume 7, Issue 1, Pages 79 - 90 2019-04-15

Gröbner-Shirshov Basis for Complex Reflection Group

Eylem Güzel Karpuz [1] , Nurten Urlu Özalan [2] , Ahmet Sinan Çevik [3]

18 61

The aim of this paper is to obtain a (non-commutative) Gröbner-Shirshov basis for the braid group associated with the complex reflection group $G_{24}$. This gives us an opportunity to get normal forms of the elements of group $G_{24}$, which represent a new and effective algorithm to solve the word problem over it.



Braid group, Gröbner-Shirshov basis, presentation, word problem
  • [1] Adian, S. I., Durnev, V. G., Decision problems for groups and semigroups, Russian Math. Surveys Vol:55, No.2 (2000), 207-296.
  • [2] Ateş, F., Çevik, A. S. , Karpuz, E. G., Gr¨obner-Shirshov basis for the singular part of the Brauer semigroup, Turkish Journal of Math. Vol:42 (2018), 1338-1347.
  • [3] Ateş, F., Karpuz, E. G., Kocapinar, C. Çevik, A. S., Gr¨obner-Shirshov bases of some monoids, Discrete Math. Vol:311 (2011), 1064-1071.
  • [4] Bergman, G. M., The diamond lemma for ring theory, Adv. Math. Vol:29 (1978), 178-218.
  • [5] Bessis, D., Michel, J., Explicit presentations for exceptional Braid groups, Experimental Math. Vol:13, No.3 (2004), 257-266.
  • [6] Bokut, L. A., Imbedding into simple associative algebras, Algebra and Logic Vol:15 (1976), 117-142.
  • [7] Bokut, L. A., Vesnin, A., Gr¨obner-Shirshov bases for some Braid groups, Journal of Symbolic Comput. Vol:41 (2006), 357-371.
  • [8] Bokut, L. A., Gr¨obner-Shirshov basis for the Braid group in the Birman-Ko-Lee generators, Journal Algebra Vol:321 (2009), 361-376.
  • [9] Bokut, L. A., Gr¨obner-Shirshov basis for the Braid group in the Artin-Garside generators, Journal of Symbolic Comput. Vol:43 (2008), 397-405.
  • [10] Buchberger, B., An Algorithm for Finding a Basis for the Residue Class Ring of a Zero-Dimensional Ideal, Ph.D. Thesis, University of Innsbruck, 1965.
  • [11] Chen, Y., Zhong, C., Gröbner-Shirshov bases for HNN extentions of groups and for the Alternating group, Comm. in Algebra Vol:36 (2008), 94-103.
  • [12] Cohen, A.M., Finite complex reflection groups, Ann. Scient. E0 c. Norm. Sup. 4e Se0 rie. Vol:9 (1976), 379-436.
  • [13] Howlett, R.B., Shi, J.Y., On regularity of finite reflection groups, Manuscripta Mathematica Vol:102, No.3 (2000), 325-333.
  • [14] Karpuz, E. G., Gr¨obner-Shirshov bases of some semigroup constructions, Algebra Colloquium Vol:22, No.1 (2015), 35-46.
  • [15] Karpuz, E. G., Ates¸, F., C¸ evik, A. S., Gr¨obner-Shirshov bases of some weyl groups, Rocky Mountain Journal of Math. Vol:45, No.4 (2015), 1165-1175.
  • [16] Karpuz, E. G., C¸ evik, A. S., Ates¸, F., Koppitz, J., Gr¨obner-Shirshov bases and embedding of a semigroup in a group, Adv. Studies Contemp. Math. vol:25, No.4 (2015), 537-545.
  • [17] Karpuz, E. G., Ates¸, F., Urlu, N., C¸ evik, A. S., Cang¨ul, I.N., A Note on the Gr¨obner-Shirshov bases over ad-hoc extensions of groups, Filomat Vol:30, No.4 (2016), 1037-1043.
  • [18] Kocapinar, C., Karpuz, E.G., Ates¸, F., C¸ evik, A.S., Gr¨obner-Shirshov bases of the generalized Bruck-Reilly -extension, Algebra Colloquium Vol:19(Spec 1) (2012), 813-820.
  • [19] Shephard, G. C., Todd, J. A., Finite unitary reflection groups, Canad. J. Math. Vol:6 (1954), 274-304.
  • [20] Shi, J.Y., Certain imprimitive reflection groups and their generic versions, Trans. Am. Math. Soc. Vol:354 (2002), 2115-2129.
  • [21] Shi, J.Y., Simple root systems and presentations for certain complex reflection groups, Comm. in Algebra Vol:33 (2005), 1765-1783.
  • [22] Shirshov, A. I., Some algorithmic problems for Lie algebras, Siberian Math. J. Vol:3 (1962), 292-296.
Primary Language en
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0002-7111-3462
Author: Eylem Güzel Karpuz (Primary Author)
Institution: Karamanoğlu Mehmetbey University
Country: Turkey


Orcid: 0000-0002-3022-350X
Author: Nurten Urlu Özalan
Institution: KTO Karatay University
Country: Turkey


Orcid: 0000-0002-7539-5065
Author: Ahmet Sinan Çevik
Institution: Selçuk University
Country: Turkey


Dates

Publication Date: April 15, 2019

Bibtex @conference paper { konuralpjournalmath487879, journal = {Konuralp Journal of Mathematics (KJM)}, issn = {}, eissn = {2147-625X}, address = {Mehmet Zeki SARIKAYA}, year = {2019}, volume = {7}, pages = {79 - 90}, doi = {}, title = {Gröbner-Shirshov Basis for Complex Reflection Group}, key = {cite}, author = {Güzel Karpuz, Eylem and Urlu Özalan, Nurten and Çevik, Ahmet Sinan} }
APA Güzel Karpuz, E , Urlu Özalan, N , Çevik, A . (2019). Gröbner-Shirshov Basis for Complex Reflection Group. Konuralp Journal of Mathematics (KJM), 7 (1), 79-90. Retrieved from http://dergipark.org.tr/konuralpjournalmath/issue/31492/487879
MLA Güzel Karpuz, E , Urlu Özalan, N , Çevik, A . "Gröbner-Shirshov Basis for Complex Reflection Group". Konuralp Journal of Mathematics (KJM) 7 (2019): 79-90 <http://dergipark.org.tr/konuralpjournalmath/issue/31492/487879>
Chicago Güzel Karpuz, E , Urlu Özalan, N , Çevik, A . "Gröbner-Shirshov Basis for Complex Reflection Group". Konuralp Journal of Mathematics (KJM) 7 (2019): 79-90
RIS TY - JOUR T1 - Gröbner-Shirshov Basis for Complex Reflection Group AU - Eylem Güzel Karpuz , Nurten Urlu Özalan , Ahmet Sinan Çevik Y1 - 2019 PY - 2019 N1 - DO - T2 - Konuralp Journal of Mathematics (KJM) JF - Journal JO - JOR SP - 79 EP - 90 VL - 7 IS - 1 SN - -2147-625X M3 - UR - Y2 - 2019 ER -
EndNote %0 Konuralp Journal of Mathematics (KJM) Gröbner-Shirshov Basis for Complex Reflection Group %A Eylem Güzel Karpuz , Nurten Urlu Özalan , Ahmet Sinan Çevik %T Gröbner-Shirshov Basis for Complex Reflection Group %D 2019 %J Konuralp Journal of Mathematics (KJM) %P -2147-625X %V 7 %N 1 %R %U
ISNAD Güzel Karpuz, Eylem , Urlu Özalan, Nurten , Çevik, Ahmet Sinan . "Gröbner-Shirshov Basis for Complex Reflection Group". Konuralp Journal of Mathematics (KJM) 7 / 1 (April 2019): 79-90.
AMA Güzel Karpuz E , Urlu Özalan N , Çevik A . Gröbner-Shirshov Basis for Complex Reflection Group. Konuralp J. Math.. 2019; 7(1): 79-90.
Vancouver Güzel Karpuz E , Urlu Özalan N , Çevik A . Gröbner-Shirshov Basis for Complex Reflection Group. Konuralp Journal of Mathematics (KJM). 2019; 7(1): 90-79.