Year 2019, Volume 58, Issue 2, Pages 145 - 165 2019-06-01

KÖMÜRÜN KENDİLİĞİNDEN YANMASI VE ETKİLEYEN FAKTÖRLER
SPONTANEOUS COMBUSTION OF COAL AND EFFECTING FACTORS

Serkan İnal [1] , Kerim Aydıner [2]

25 47

Kömür yapısı gereği oksijeni adsorplamaya ve oksidasyona yatkındır. Kömürün kendiliğinden
yanması oldukça karmaşık ve hala tam olarak açıklanamamış bir mekanizmaya sahipse de
günümüzde en yaygın kabul gören kuram kömür oksijen birleşiği kuramıdır. Bu kurama göre
kömürün kendiliğinden yanması yavaş oksidasyon, hızlanan oksidasyon ve hızlı oksidasyon
aşamalarından oluşmaktadır. Süreç içerisinde oksijenin fiziksel ve kimyasal adsorpsiyonu ile
serbest radikallerin reaksiyonları sırasıyla dominant etkiye sahiptirler. Kömürün ve/veya kömür
atıklarının bulunduğu her yerde kendiliğinden yanma herhangi bir dış müdahale olmaksızın
meydana gelebilmektedir. Kendiliğinden yanmayı etkileyen parametreler açısındansa genellemeler
sakıncalı olup, bazı yerleşmiş bilgilerin hatalı olabileceği günümüzde ortaya konmuştur. Örneğin;
kömürün kendiliğinden yanması sanıldığı üzere sadece rankı düşük kömürlerde gerçekleşmez,
yüksek pirit içerikli kömürlerin kendiliğinden yanma eğilimi düşük çıkabilir ya da eğilimi düşük olan
ve risk teşkil etmediği düşünülen kömürlerde yıllar sonra kendiliğinden yanma görülebilmektedir.
Bu sebeple kömürlerin kendiliğinden yanma eğilimleri belirlenmeli, üretim, stoklama ve nakliye
gibi tüm aşamalar detaylı şekilde planlanmalı ve sürekli takip ile kontrol yapılarak acil müdahale
planları da hazırlanmalıdır.

Coal tends to adsorb oxygen and oxidize due to its structure. Spontaneous combustion mechanism

of coal is very complicated, and still this mechanism is not completely understood. However, coaloxygen

compound theory is widely accepted by researchers nowadays. According to this theory,

spontaneous combustion consists of slow oxidation, accelerating oxidation and rapid oxidation

stages. In these stages, the physical oxygen adsorption, chemical oxygen adsorption and free

radicals reactions are the dominant mechanisms, respectively. Spontaneous combustion of coal

can occur without any external impact anywhere coal and / or coal wastes exist. Nowadays, its

revealed that some common thoughts about the effecting parameters on spontaneous combustion

of coal are wrong. For example; spontaneous combustion of coal does not occur only in low rank

coals, and high pyrite content coals may have low spontaneous combustion tendency or coal

mines which were determined as not risky can unexpectedly combust. Therefore, spontaneous

combustion tendencies of coals must be determined; all stages such as mining, stockpile design

and transportation must be planned in detail; continuous monitoring and emergency response

plans must be arranged in case a spontaneous combustion.

  • Adamus, A., Sancer, J., Guranova, P., Zubicek, V., 2011. An Investigation of the Factors Associated with Interpretation of Mine Atmosphere for Spontaneous Combustion In Coal Mines. Fuel Processing Technology, 92, 663-670.
  • Akgün, F., Essenhigh, R.H., 2001. Self-ignition Characteristics of Coal Stockpiles: Theoretical Prediction from a Two-dimensional Unsteady-State Model. Fuel, 80, 409-415.
  • Arısoy, A., Akgün, F., 1994. Modelling of Spontaneous Combustion of Coal with Moisture Content Included. Fuel, 73,2, 281-286.
  • Arısoy, A., Akgün, F., 2000. Effect of Pile Height on Spontaneous Heating of Coal Stockpiles. Combustion Science and Technology, 153, 157-168.
  • Arısoy, A., Beamish, B., 2015. Reaction Kinetics of Coal Oxidation at Low Temperatures. Fuel, 159, 412-417.
  • Avila, C., Wu, T., Lester, E., 2014. Petrographic Characterization of Coal as a Tool to Detect Spontaneous Combustion Potential. Fuel, 125, 173-182.
  • Beamish, B. B., Arisoy, A., 2008. Effect of Mineral Matter on Coal Self-heating Rate. Fuel, 87, 125-130.
  • Beamish, B. B., Blazak, D.G., 2005. Relationship Between Ash Content and R70 Self-heating Rate of Callide Coal. International Journal of Coal Geology, 64, 126-132.
  • Beamish, B.B., Barakat, M.A., George, J.D.St., 2001. Spontaneous-combustion Propensity of New Zealand Coals Under Adiabatic Conditions. International Journal of Coal Geology, 45, 217-224.
  • Beamish, B.B., Hamilton G.R., 2005. Effect of Moisture Content on the R70 Self-Heating Rate of Callide Coal. International Journal of Coal Geology, 64, 133-138.
  • Beamish, B.B., Lau, A.G., Moodie, A.L., Vallance, T.A., 2002. Assessing The Self-Heating Behaviour of Callide Coal Using a 2-Metre Column. Journal of Loss Prevention in the Process Industries, 15, 385-390.
  • Beamish, B.B., Theiler, J., 2015. Contrast in Self- Heating Rate Behaviour for Coals of Similar Rank, Coal Operators’ Conference, 11-13 Şubat, The University of Wollongong, Sidney-Avustralya.
  • Belle, B., Biffi, M., 2018. Cooling Pathways for Deep Australian Longwall Coal Mines of the Future. International Journal of Mining Science and Technology, Doi: 10.1016/j.ijmst.2018.02.001.
  • Braun, E., 1987. Self Heating Properties of Coal. (N.B.S) National Bureau of Standards, NBSIR 87-3554, 108.
  • BP, 2017. BP Energy Outlook 2017 Edition,https://www. bp.com/content/dam/bp/pdf/energy-economics/energyoutlook- 2017/bp-energy-outlook-2017.pdf 16 Şubat 2018.
  • Carras, J.N., Young, B.C., 1994. Self-heating of Coal and Related Materials: Models, Application and Test Methods. Progress in Energy and Combustion Science, 20, 1-15.
  • Chen, X.D., Stott, J.B., 1993. The Effect of Moisture Content on the Oxidation Rate of Coal during Near Equilibrium Drying and Wetting at 50 0C. Fuel, 72 (6), 787-92.
  • Cheng, W., Xin, L., Wang, G., Liu, Z., Nie, W., 2015. Analytical Research on Dynamic Temperature Field of Overburden in Goaf Fire-Area Under Piecewise-Linear Third Boundary Condition. International Journal of Heat and Mass Transfer, 90, 812-824.
  • Choi, H., Thiruppathiraja, C., Kim, S., Rhim, Y., Lim, J., Lee, S., 2011. Moisture Readsorption and Low Temperature Oxidation Characteristics of Upgraded Low Rank Coal. Fuel Processing Technology, 92, 2005- 2010.
  • Choudhury, D., Sarkar, A. ve Ram, L. C., 2016. An Autopsy of Spontaneous Combustion of Lignite, International Journal of Coal Preparation and Utilization, 36, 2, 109-123.
  • Chu, T., Zhou, S., Xu, Y., Zhao, Z., 2011. Research on the Coupling Effects Between Stereo Gas Extraction and Coal Spontaneous Combustion. Procedia Engineering, 26, 218-227.
  • Ciesielczuk, J., Misz-Kennan, M., Hower, J.C., Fabianska, M.J., 2014. Mineralogy and Geochemistry of Coal Wastes from the Starzykowiec Coal-Waste Dump (Upper Silesia, Poland). International Journal of Coal Geology, 127, 42-55.
  • Cliff, D., 2009, Spontaneous Combustion Management - Linking Experiment With Reality, 2009. Coal Operators’ Conference, University of Wollongong & the Australasian Institute of Mining and Metallurgy, 281- 286.
  • Congliang, L., Zhixiang, T., Kazhong, D., Peixian, L., 2013. Synergistic Instability of Coal Pillar and RoofSystem and Filling Method Based on Plate Model. International Journal of Mining Science and Technology, 23, 145-149.
  • Çakır, A., 2003. Zonguldak Havzası Kömür Damarlarından Elde Edilecek Kendiliğinden Yanma Verilerinin Bir Uzman Sistem Programı ile Değerlendirilmesi. Doktora Tezi, Zonguldak Karaelmas Üniversitesi, Fen Bilimleri Enstitüsü, s. 186.
  • Demirbilek, S., 1986, The Development of a Spontoneous Cobustion Risk Classifiction System for Coal Seems, Doktora Tezi, Nothingom Universty.
  • Deng, J., Lei, C., Xiao, Y., Cao, K., Ma, L., Wang, W., Laiwang, B., 2018. Determination And Prediction on “Three Zones” of Coal Spontaneous Combustion in A Gob of Fully Mechanized Caving Face. Fuel, 211, 458- 470.
  • Deng, J., Ma, X., Zhang, Y., Li, Y., Zhu, W., 2015a. Effects of Pyrite on the Spontaneous Combustion of Coal. International Journal Coal Science Technology, 2(4), 306–311.
  • Deng, J., Xiao, Y., Li, Q., Lu, J., Wen, H., 2015b. Experimental Studies of Spontaneous Combustion and Anaerobic Cooling of Coal. Fuel, 157, 261-269.
  • Deng, J., Zhao, J., Zhang, Y., Geng, R., 2014. Study on Coal Spontaneous Combustion Characteristic Temperature of Growth Rate Analysis. Procedia Engineering, 84, 796-805.
  • Deng, J., Zhao, J., Zhang, Y., Huang, A., Liu, X., Zhai, X., Wang, C., 2016. Thermal Analysis of Spontaneous Combustion Behavior of Partially Oxidized Coal. Process Safety and Environmental Protection, 104, 218-224.
  • Dias, C.L., Oliveria, M.L.S., Hower, J.C., Taffarel, S.R., Kautzmann, R.M., Silva, L.F.O., 2014. Nanominerals and Ultrafine Particles from Coal Fires from Santa Catarina, South Brazil. International Journal of Coal Geology, 122, 50-60.
  • Didari, V., 1986, Yeraltı Ocaklarında Kömürün Kendiliğinden Yanması ve Risk İndeksleri, Madencilik, 25 (4), 29-34.
  • Discover, 1999. China’s on Fire, http://discovermagazine. com/1999/oct/chinasonfire1697 19 Şubat 2018.
  • EIA, 2017. International Energy Outlook, United States Energy Information Administration (E.I.A.), https://www. eia.gov/outlooks/ieo/pdf/0484(2017).pdf 16 Şubat 2018.
  • Eroğlu, N., Gouws, M.J., 1993. Kömürün Kendiliğinden Yanmasına Ait Kuramlar. Madencilik, 17 (2), 13-18.
  • Ersoy, M., 2010. Sürdürülebilir Kalkınmada Avrupa Birliği ve Türkiye Kömür Madenciliği. Türkiye 17. Kömür Kongresi, Haziran 2010, 459-469.
  • Feng, K.K., Chakravorty, R.N., Cochrane, T.S., 1973. Spontaneous Combustion A Coal Mining Hazard. The Canadian Mining and Metallurgical Journal, 75-84.
  • Ford, P.C.,1981. The Water Gas Shift Reaction: Homogeneous Catalysis by Ruthenium and Other Metal Carbonyls. Accounts of Chemical Research, 14, 2 , 31-37.
  • Ghosh, R., 1986. Spontaneous Combustion of Certain Indian Coals Some Physico-chemical Considerations. Fuel, 65, 1042-1046.
  • Gürdal, G., Hoşgörmez, H., Özcan, D., Li, X., Liu, H., Song, W., 2015. The properties of Çan Basin Coals (Çanakkale – Turkey): Spontaneous Combustion and Combustion By-products. International Journal of Coal Geology, 138, 1-15.
  • Hao, S., Shuguang, J., Lanyun, W., Zhengyan, W., 2011. Bulking Factor of the Strata Overlying the Gob and a Three-Dimensional Numerical Simulation of the Air Leakage Flow Field. Mining Science and Technology (China), 21, 261-266.
  • Heffern, E. L., Coates, D. A., 2004. Geologic History of Natural Coal-bed Fires, Powder River Basin, USA. International Journal of Coal Geology, 59, 25-47.
  • Huangfu, W., You, F., Shao, Y., Wang, Z., Zhu, Y., 2018. Effects of Oxygen Concentration and Heating Rates on Non-isothermal Combustion Properties of Jet Coal in East China. Procedia Engineering, 211, 262-270.
  • Itay M., Hill C.R., Glasser D., 1989. A Study of the Low Temperature Oxidation of Coal. Fuel Processing Technology, 21, 81–97.
  • Jendrus, R., 2016. Chemical and Physical Aspect of Fires on Coal Waste Dumps, ISSN 2082-701+; elSSN 2450-5552, 8, 131-149.
  • Jiang, M., Qiu, J., Zhou, M., He, X., Cui, H., Lerro, C., Lv, L., Lin, X., Zhang, C., Zhang, H., Xu, R., Dang, Y., Han, X., Chen, Y., Tang, Z., Lin, R., Yao, T., Su, J., Xu, X., Liu, X., Wang, Y., Ma, B., Qiu, W., Zhu, C., Wang, S., Huang, H., Zhao, N., Li, X., Liu, Q., Zhang, Y., 2015. Exposure to Cooking Fuels and Birth Weight in Lanzhou, China: a Birth Cohort Study. BMC Public Health, 15:7 12.
  • Kadioğlu, Y., Varamaz, M., 2003. The Effect of Moisture Content and Air-Drying on Spontaneous Combustion Characteristic of Two Turkish Lignites. Fuel, 1685-1693.
  • Kam, A.Y., Hixson, A.N., Perlmutter, D.D., 1976a. The Oxidation of Bituminous Coal-1. Chemical Engineering Science, 31, 815-819.
  • Kam, A.Y., Hixson, A.N., Perlmutter, D.D., 1976b. The Oxidation of Bituminous Coal-2. Chemical Engineering Science, 31, 821-834. Karsner G.G., Perlmutter D.D., 1982. Model for Coal Oxidation Kinetics. 1. Reaction Under Chemical Control. Fuel,61(1):29–34.
  • Kataka, M.O., Matiane, A.R., Odhiambo, B.D.O., 2018. Chemical and Mineralogical Characterization of Highly and Less Reactive Coal from Northern Natal and Venda-Pafuri Coalfields in South Africa. Journal of African Earth Sciences, 137, 278-285.
  • Kaymakçı, E., Didari, V., 2002. Relations between Coal Properties and Spontaneous Combustion Parameters. Turkish Journal of Engineering and Enviromental Science., 26, Sayfa 59-64.
  • Krishnaswamy S., Bhat S., Gunn R.D., Agarwal P.K., 1996a Low-temperature Oxidation of Coal. 1. A Single- Particle Reaction Diffusion Model. Fuel, 75(3):333 - 343.
  • Krishnaswamy, S., Gunn, R.D., Agarwal, P.K., 1996b. Low-temperature Oxidation of Coal. 2. An Experimental and Modeling Investigation Using a Fixed-bed Isothermal Flow Reactor. Fuel, 75(3), 344 - 352.
  • Kuchta, J.M., Hertzberg, M., Cato, R., Litton, C.D., Burgess, D., Van Dolah, R.W., 1975. Criteria of Incipient Combustion in Coal Mines. Symposium (International) on Combustion, 15, 1, 127-136.
  • Kuenzer, C., Stracher, G.B., 2012. Geomorphology of Coal Seam Fires. Geomorphology, 138, 209-222.
  • Küçük, A., Kadioğlu, Y., Gülaboğlu M.S., 2003. A Study of Spontaneous Combustion Characteristics of a Turkish Lignite: Particle Size, Moisture of Coal, Humidity of Air. Combustion and Flame, 133(3), 255-61.
  • Li, B., Chen, G., Zhang, H., Sheng, C., 2014. Development of Non-isothermal TGA–DSC for Kinetics Analysis of Low Temperature Coal Oxidation Prior to Ignition. Fuel, 118, Sayfa 385-391.
  • Li, L., Qin, B., Ma, D., Zhuo, H., Liang, H., Gao, A., 2018. Unique Spatial Methane Distribution Caused by Spontaneous Coal Combustion in Coal Mine Goafs: An Experimental Study. Process Safety and Environment Protection, https://doi.org/10.1016/j.psep.2018.01.014
  • Li, Y. H. ve Skinner, J. L., 1986. Deactivation of Dried Subbituminous Coal. Chemical Engineering Communications, 49, 81-98.
  • Li, Z., Zhang, Y., Jiang, X., Zhang, Y., Chang, L., 2016. Insight into the Intrinsic Reaction of Brown Coal Oxidation at Low Temperature: Differential Scanning Calorimetry Study. Fuel Processing Technology, 147, 64–70.
  • Liang, Y., Fuchao, T., Haizhu, L., Hui, T., 2015. Characteristics of Coal Re-Oxidation Based on Microstructural and Spectral Observation. International Journal of Mining Science and Technology, 25, 749-754.
  • Ma, D., Qin, B., Song, S., Liang, H., Gao, A., 2017. An Experimental Study on the Effects of Air Humidity on the Spontaneous Combustion Characteristics of Coal. Combustion Science and Technology, 189 (12), 2209- 2219.
  • Mahidin U., Hiramoto U., Ishikawa S., 2002. The Evaluation of Spontaneous Combustion Characteristics and Properties of Raw and Upgraded Indonesian Low Rank Coals. Coal Preparation, 22, 81-91.
  • Malley, C.S., Kuylenstiema, J. C. I., Vallac, H. W., Henze, D. K., Blencowe, H., Ashmore, M. R., 2017. Pretermbirth Associated with Maternal Fine Particulatematter Exposure: A Global, Regional and National Assessment. Environment International, 101, 173-183.
  • Mao, Z., Zhu, H., Zhao, X., Sun, J., Wang, Q., 2013. Experimental Study on Characteristic Parameters of Coal Spontaneous Combustion. Procedia Engineering, 62, 1081-1086.
  • Mastalerz, M., Drobniak, A., Hower, J.C., O’Keefe, J.M.K., 2010. Spontaneous combustion and coal petrology. In: Stracher, G.B., Sokol, E.V., Prakash, A. (Eds.), Coal and Peat Fires: A Global Perspective. Volume 1: Coal - Geology and Combustion. Elsevier, 47–62.
  • Meng, X., Gao, M., Chu, R., Wu, G., Fang, Q., 2016. Multiple Linear Equation of Pore Structure and Coal- Oxygen Diffusion on Low Tepmperature Oxidation Process of Lignite. Chinese Journal of Chemical Engineering, 24, 818-823.
  • Mohalik, N.K., Lester, E., Lowndes, I.S., 2017. Development of a Petrographic Technique to Assess the Spontaneous Combustion Susceptibility of Indian Coals. International Journal of Coal Preparation and Utilization, doi: 10.1080/19392699.2017.1360874.
  • Morris, R., Atkinson, T., 1986. Geological and Mining Factors Affecting Spontaneous Heating of Coal. Mining Science and Technology, 3, 217-231.
  • Morris, R., Atkinson, T., 1988. Seam Factor and The Spontaneous Heating of Coal. Mining Science and Technology, 7, 149-159.
  • Münzer H., 1975. Textbook of coal petrology. 2nd ed. Berlin: Gebruder Borntraeger. In: Stach, E., Mackowsky, M.T., Teichmuller, M., Taylor, G.H., Chandra, D., Teichmuller, R., 387-388.
  • Nandy, D.K., Banerjee, D.D., Chakravort, R.N., 1972. Application of Crossing Point Temperature for Determining the Spontaneous Heating Characteristics of Coals, Journal of Mines, Metals and Fuels, 20-41.
  • Nimaje, D.S., Tripathy, D.P., 2016. Characterization of Some Indian Coals to Assess Their Liability to Spontaneous Combustion. Fuel, 163, 139-147.
  • Novikova, S., Sokol, E., Khvorov, P., 2016. Multiple Combustion Metamorphic Events in the Goose Lake Coal Basin, Transbaikalia. Russia: First Dating Results, Quaternary Geochronology, 36, 38-54.
  • O’Keefe, J.M.K., Henke, K.R., Hower, J.C., Engle, M.A., Stracher, G.B., Stucker, J.D., Drew, J.W., Staggs, W.D., Murray, T.M., Hammon III, M.L., Adkins, K.D., Mullins, B.J., Lemley, E.W., 2010. CO2, CO, and Hg emissions from the Truman Shepherd and Ruth Mullins Coal Fires, Eastern Kentucky, USA. Science of the Total Environment, 408, 1628-1633.
  • Oliveira, M.L.S., Boit, K., Pacheco, F., Teixeira, E.C., Schneider, I.L., Crissien, T.J., Pinto, D.C., Oyaga, R.M., Silva, L.F.O., 2018. Multifaceted Processes Controlling the Distribution of Hazardous Compounds in the Spontaneous Combustion of Coal and the Effect of these Compounds on Human Health. Environmental Research, 160, 562-567.
  • Ören, Ö., Şensöğüt, C., 2007. Kütahya Bölgesi Linyitlerinin Kendiliğinden Yanmaya Yatkınlıklarının Araştırılması. Madencilik, 46 (1), 15-23.
  • Ören, Ö., Şensöğüt, C., 2016. Determination of Safe Storage Types for Coals with Regard to Their Susceptibility to Spontaneous Combustion – Tuncbilek Coal Case. International Journal of Coal Preparation and Utilization, Doi: 10.1080/19392699.2016.1252339
  • Özdeniz, A.E., 2003. Kömür Stoklarındaki Kendiliğinden Yanma Olayının İncelenmesi - Garp Linyitleri İşletmesi (GLİ) Örneği. Doktora Tezi, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, 185 s.
  • Özdeniz, A.H., 2010. Determination of Spontaneous Combustion in Industrial-Scale Coal Stockpiles. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32, 665-673.
  • Parsa, M.R., Chaffee, A.L., 2018. The Effect of Densification with NaOH on Brown Coal Thermal Oxidation Behaviour and Structure. Fuel, 216, 548- 558.
  • Pis, J.J., Puente, G.D.L., Moran, A., Rubiera, F., 1996. A Study of the Self-heating of Fresh and Oxidized Coals by Differential Thermal Analysis. Thermochimic Acta, 279, 93-101.
  • Pone, J.D.N., Hein, K.A.A., Stracher, G.B., Annegarn, H.J., Finkelman, R.B., Blake, D.R., McCormack, J.K., Schroeder, P., 2007. The Spontaneous Combustion of Coal and Its By-Products in the Witbank and Sasolburg Coal Fields of South Africa. International Journal of Coal Geology, 72, 124-140.
  • Qi, G., Wang, D., Chen, Y., Xin, H., Qi, X., Zhong, X., 2014a. The Application of Kinetics Based Simulation Method in Thermal Risk Prediction of Coal. Journal of Loss Prevention in the Process Industries, 29, 22-29.
  • Qi, G., Wang, D., Zheng, K., Xu, J., Qi, X., Zhong, X., 2015. Kinetics characteristics of Coal Low-temperature Oxidation in Oxygen-depleted Air. Journal of Loss Prevention in the Process Industries, 35, 224-231.
  • Qi, X., Wang, D., Milke, J.A., Zhong, X., 2011. Crossing Point Temperature of Coal. Mining Science and Technology (China), 21, 255-260.
  • Qi, X., Wang, D., Milke, J.A., Zhong, X., 2012. Selfreaction of Initial Active Groups in Coal. International Journal of Mining Science and Technology, 22, 169- 175.
  • Qi, X., Wang, D., Xue, H., Jin, L., Su, B., Xin, H., 2014b, Oxidation and Self-Reaction of Carboxyl Groups During Coal Spontaneous Combustion. Spectroscopy Letters 48: An International Journal of Rapid Communication, 173-178.
  • Qi, X., Wang, D., Zhong, X., Gu, J., Xu, T., 2010. Characteristics of Oxygen Consumption of Coal at Programmed Temperatures. Mining Science and Technology, 20, 372–377.
  • Qiang, C., Zhong-jun, S., Xin-quan, Z., Hai-yan, W., 2011. Multi-field Coupling Laws of Mixed Gas in Goaf. Procedia Engineering, 26, 204-210.
  • Qin, Y., Liu, W., Yang, C., Fan, Z., Wang, L., Jia, G., 2012. Experimental Study on Oxygen Consumption Rate of Residual Coal in Goaf. Safety Science, 50, 787- 791.
  • Qin, Y., Liu, W., Yang, W., Su, G., 2011. Numerical Simulation Study of Spontaneous Combustion in Goaf Based on Non-Darcy Seepage. Procedia Engineering, 26, 486-494.
  • Querol, X., Izquierdo, M., Monfort, E., Alvarez, E., Font, O., Moreno, T., Alastuey, A., Zhuang, X., Lu, W., Wang, Y., 2008. Environmental Characterization of Burnt Coal Gangue Banks at Yangquan, Shanxi Province, China. International Journal of Coal Geology, 75, 93-104.
  • Querol, X., Zhuang, X., Font, O., Izquierdo, M., Alastuey, A., Castro, I., Van Drooge, B.L., Grimalt, J.O., Elvira, J., Cabanas, M., Bartroli, R., Hower, J.C., Ayora, C., Plana, F., Lopez-Soler, A., 2011, Influence Of Soil Cover on Reducing The Environmental İmpact of Spontaneous Coal Combustion in Coal Waste Gobs: A Review and New Experimental Data. International Journal of Coal Geology, 85, 2-22.
  • Ray, S.K., Panigrahi, D.C., Varma, A.K., 2014. An Electro-Chemical Method for Determining the Susceptibility of Indian coals to Spontaneous Heating. International Journal of Coal Geology, 128-129, 68-80.
  • Shi, Q., Qin, B., Liang, H., Gao, Y., Qiamg, B., Qu, B., 2018. Effects Of Igneous Intrusions on the Structure and Spontaneous Combustion Propensity of Coal: A Case Study of Bituminous Coal in Daxing Mine, China. Fuel, 216, 181-189.
  • Singh, R.N., Demirbilek, S., Turney, M., 1984, Kömürün Kendiliğinden Yanma Risk İndeksinin Maden Dizaynı, Depolama ve Deniz Nakliyatına Uygulanması. Türkiye 4. Kömür Kongresi, Zonguldak, 203-221.
  • Singh, R.V.K., 2013, Spontaneous Heating and Fire in Coal Mines. Procedia Engineering, 62, 78-90.
  • Sipilä, J., Auerkari, P., Heikkilä, A.N., Tuominen R., Vela, I., Itkonen J., Rinne, M., Aaltonen, K., 2012. Risk and Mitigation of Self-heating and Spontaneous Combustion in Underground Coal Storage. Journal of Loss Prevention in the Process Industries, 25, 617-622.
  • Smith, M.A., Glasser, D., 2005. Spontaneous Combustion of Carbonaceous Stockpiles. Part II: Factors Affecting the Rate of the Low-temperature Oxidation Reaction. Fuel, 84, 1161-1170.
  • Song, Z., Zhu, H., Jia, G., He, C., 2014. Comprehensive Evaluation on Self-Ignition Risks of Coal Stockpiles Using Fuzzy AHP Approaches. Journal of Loss Prevention in the Process Industries, 32, 78-94.
  • Speight, J.G., 2013. The Chemistry and Technology of Coal, Third Edition, Taylor and Francis Group, U.S.A., 807.
  • Stott, J.B., 1960. Influence of Moisture on the Spontaneous Heating of Coal. Nature, 188, 54.
  • Stracher, G.B., Taylor, T.P., 2004. Coal Fires Burning out of Control Around the World: Thermodynamic Recipe for Environmental Catastrophe. International Journal of Coal Geology, 59, 7-17.
  • Su, H., Zhou, F., Li, J., Qi, H., 2017. Effects of Oxygen Supply on Low-temperature Oxidation of Coal: A Case Study of Jurassic coal in Yima, China. Fuel, 202, 446- 454.
  • Şensöğüt, C., Özdeniz, A.H., 2008. Decrease of Calorific Value and Particle Size in Coal Stockpiles. Energy Sources, Part A, 30:11, 988-993.
  • Tan, B., Shen, J., Zuo, D., Guo, X., 2011. Numerical Analysis of Oxidation Zone Variation in Goaf. Procedia Engineering, 26, 659-664.
  • Tang, Y., 2015. Sources of Underground CO: Crushing and Ambient Temperature Oxidation of Coal. Journal of Loss Prevention in the Process Industries, 38, 50-57.
  • Tang, Y., Wang, H., 2018. Development of a Novel Bentonite–Acrylamide Superabsorbent Hydrogel for Extinguishing Gangue Fire Hazard. Powder Technology, 323, 486–494.
  • Taraba, B., Pavelek, Z., 2013. Study of Coal Oxidation Behaviour in Re-opened Sealed Heating. Journal of Loss Prevention in the Process Industries, 40, 433-436.
  • Tuyen, L.T., Ohga, K. Ve Isei, T., 2017. Susceptibility to Spontaneous Combustion of Vietnamese Anthracite. Journal of MMIJ, 133,6, 140-150.
  • Tuyen, L.T., Tuan, N.V., Ohga, K., Isei, T., 2016. Characteristics of Spontaneous Combustion of Anthracite in Vietnamese Coal Mines. Journal of MMIJ, 132, 11, 167-174.
  • Van Krevelen, D.W., 1993. Coal: Typology-Chemistry- Physics-Constitution. London: Elsevier, 627–658.
  • Vance, W.E., Chen, X.D., Scott, S.C., 1996. The Rate of Temperature Rise of a Subbituminous Coal During Spontaneous Combustion in an Adiabatic Device: the Effect of Moisture Content and Drying Methods. Combustion and Flame, 106, 261-270.
  • WHO, 2017. World Health Statistics 2017: monitoring Health for the SDGs, Sustainable Development Goals. World Health Organization (W.H.O), Editörler: L’IV Com Sàrl, Villars-sous-Yens, ISBN 978-92-4-156548-6, World Health Organization, France.
  • Wang, D., Qi, X., Zhong, X., Gu, J., 2009. Test Method for the Propensity of Coal to Spontaneous Combustion. Procedia Earth and Planetary Science, 1, 20-26.
  • Wang, D., Xin, H., Qi, X., Dou, G., Qi, G., Ma, L., 2016. Reaction Pathway of Coal Oxidation at Low Temperatures: A Model of Cyclic Chain Reactions and Kinetic Characteristics. Combustion and Flame, 163, 447-460.
  • Wang, H., Dlugogorski, B. Z., Kennedy, E. M., 2003. Coal Oxidation at Low Temperatures: Oxygen Consumption, Oxidation Products, Reaction Mechanism and Kinetic Modeling. Progress in Energy and Combustion Science, 29, 487-513.
  • Wang, K., Zhai, Z., Jiang, S., Ge, H., A., 2017a. Review of Spontaneous Combustibility of Oxidized Coal. Advances in Engineering Research, 120, 2055-2059.
  • Wang, X., Luo, Y., Vieira, B., 2018. Experimental Technique and Modeling for Evaluating Heat of Rewetting Effect on Coals’ Propensity of Spontaneous Combustion Based on Adiabatic Oxidation Method. International Journal of Coal Geology, 187, 1-10.
  • Wang, Y., Shi, G., Guo, Z., 2017b. Heat Transfer and Thermodynamic Processes in Coal-bearing Strata Under the Spontaneous Combustion Condition. Numerical Heat Transfer, Part A: Applications, 71:1, 1-16.
  • Wen, H., Yu, Z., Deng, J., Zhai, X., 2017. Spontaneous İgnition Characteristics Of Coal İn A Large-Scale Furnace: An Experimental and Numerical Investigation, Applied Thermal Engineering. 114, 583–592.
  • Wojtacha-Rychter, K., Smolinski, A., 2018. The Interaction Between Coal and Multi-Component Gas Mixtures in the Process of Coal Heating at Various Temperatures: An Experimental Study. Fuel, 150-157.
  • Wu, Y., Wu, J., 2011. Experimental Study on Significant Gases of Coal Spontaneous Combustion by Temperature Programmed (TP). Procedia Engineering, 26, 120-125.
  • Xia, T., Wang, X., Zhou, F., Kang, J., Liu, J., Gao, F., 2015b. Evolution of Coal Self-heating Processes in Longwall Gob Areas. International Journal of Heat and Mass Transfer, 86, 861–868.
  • Xia, T., Zhou, F., Gao, F., Kang, J., Liu, J., Wang, J., 2015a. Simulation of Coal Self-heating Processes in Underground Methane-rich Coal Seams. International Journal of Coal Geology, 141–142, 1-12.
  • Xia, T., Zhou, F., Wang, X., Zhang, Y., Li, Y., Kang, J., Liu, J., 2016. Controlling Factors of Symbiotic Disaster Between Coal Gas and Spontaneous Combustion İn Longwall Mining Gobs. Fuel, 182, 886-896.
  • Xiao, Y., Lü, H., Huang, A., Deng, J., Shu, C., 2018. A New Numerical Method to Predict the Growth Temperature of Spontaneous Combustion of 1/3 Coking Coal. Applied Thermal Engineering, 131, 221-229.
  • Xie, Z., Cai, J., Zhang, Y., 2012b. Division of Spontaneous Combustion “Three-zone” in Goaf of Fully Mechanized Coal Face with Big Dip and Hard Roof. Procedia Engineering, 43, 82-87.
  • Xie, Z., Zhang, Y., Jin, C., 2012a. Prediction of Coal Spontaneous Combustion in Goaf Based on the BP Neural Network. Procedia Engineering, 43, 88-92.
  • Xin, H., Wang, D., Qi, X., Qi, G., Dou, G., 2014. Structural Characteristics of Coal Functional Groups Using Quantum Chemistry for Quantification of İnfrared Spectra. Fuel Processing Technology, 118, 287-295.
  • Xin, H., Wang, D., Qi, X., Zhong, X., Ma, L., Dou, G., Wang, H., 2018. Oxygen Consumption and Chemisorption in Low-temperature Oxidation of Subbituminous Pulverized Coal. Spectroscopy Letters, 51 (2), 104-111.
  • Xu, Q., Yang, S., Tang, Z., Cai, J., Zhong, Y., Zhou, B., 2017a. Free Radical and Functional Group Reaction and Index Gas CO Emission during Coal Spontaneous Combustion. Combustion Science and Technology, DOI: 10.1080/00102202.2017.1414203, 1-15.
  • Xu, T., Wang, D., He, Q., 2013. The Study of the Critical Moisture Content at Which Coal Has the Most High Tendency to Spontaneous Combustion. International Journal of Coal Preparation and Utilization, 33, 117-127.
  • Xu, Y., Wang, L., Tian, N., Zhang, J., Yu, M., Delichatsios, A., 2017b. Spontaneous combustion Coal Parameters for the Crossing-Point Temperature (CPT) Method in a Temperature–Programmed System (TPS). Fire Safety Journal, 91, 147–154.
  • Yang, S., Hu, X., Liu, W. V., Cai, J., Zhou, X., 2018. Spontaneous Combustion İnfluenced by Surface Methane Drainage and Its Prediction by Rescaled Range Analysis. International Journal of Mining Science and Technology, 28, 2, 215-221.
  • Yangdong, O., Liwen, G., Hongcui, M., 2012. Research on the Influence of Oxygen-containing Functional Group and Gas Emission by Coal Seams. Energy Procedia, 17, 1901-1906.
  • Yu, T., Lu, P., Wang, Q., Su, J., 2013. Optimization of Ventilating Energy Distribution for Controlling Coal Spontaneous Combustion of Sealed Panel in Underground Coal Mines. Procedia Engineering, 62, 972-979.
  • Yu, Z., Wen, H., Chen, X., Zhang, C., 2018. Integrated Approaches for Extinguishing the Fire of Coal Pillars in Contiguous Coal Seams. Procedia Engineering, 211, 963-971.
  • Yuan, L, Smith, A.C., 2012. The Effect of Ventilation on Spontaneous Heating of Coal. Journal of Loss Prevention in the Process Industries, 25, 131-137.
  • Yuan, L., Smith, A. C., 2011. CO ve CO2 Emmissions from Spontaneous Heating of Coal Under Different Ventilation Rates. International Journal of Coal Geology, 88, 24-30.
  • Zapletal, P., Koudelkova, J., Zubicek, V., Kral, T., Mokrosova, A., 2018. A New Method of Gas Drainage as a Solution for Dangerous Phenomena in Underground Coal Mines. The Mining-Geology- Petroleum Engineering Bulletin, 7-12.
  • Zhang, J., Choi, W., Ito, T., Takahashi, K., Fujita, M., 2016a. Modelling and Parametric Investigation on Spontaneous Heating in Coal Pile. Fuel, 176, 181-189.
  • Zhang, J., Liang, Y., Ren, T., Wang, Z., Wang, G., 2016c. Transient CFD Modelling of Low-Temperature Spontaneous Heating Behaviour in Multiple Coal Stockpiles with Wind Forced Convection. Fuel Processing Technology, 149, 55-74.
  • Zhang, J., Ren, T., Liang, Y., Wang, Z., 2016b. A Review On Numerical Solutions to Self-Heating of Coal Stockpile: Mechanism, Theoretical Basis, and Variable Study. Fuel, 182, 80-109.
  • Zhang, L., Li, Z., He, W., Li, J., Qi, X., Zhu, J., Zhao, L., Zhang, X., 2018. Study on the Change of Organic Sulfur Forms in Coal During Low-Temperature Oxidation Process. Fuel, 222, 350-361.
  • Zhang, Y., Bao, N., Huang, Z., Xue, B., Gao, Y., 2012. Research on Relationship Between Porosity of Coal, Amount of Air Leakage and Gradient of Wind Pressure. Procedia Engineering, 45, 774-779.
  • Zhang, Y., Wang, J., Wu, J., Xue, S., Li, Z., Chang, L., 2015. Modes and Kinetics of CO2 and CO Production from Low-temperature Oxidation of Coal. International Journal of Coal Geology, 140, 1-8.
  • Zhong, X., Wang, M., Dou, G., Wang, D., Chen, Y., Mo, Y., Zhang, Y., 2015. Structural Characterization and Oxidation Study of a Chinese Lignite with the Aid of Ultrasonic Extraction. Journal of the Energy Institute, 88, 398-405.
  • Zhou, C., Zhang, Y., Wang, J., Xue, S., Wu, J., Chang, L., 2017. Study on the Relationship Between Microscopic Functional Group and Coal Mass Changes During Lowtemperature Oxidation of Coal. International Journal of Coal Geology, 171, 212–222.
  • Zhou, Q., Zou, T., Zhong, M., Zhang, Y., Wu, R., Gao, S., Xu, G., 2013. Lignite Upgrading by Multi-Stage Fluidized Bed Pyrolysis. Fuel Processing Technology, 116, 35-43.
  • Zhu, H., Song, Z., Tan, B., Hao, Y., 2013. Numerical Investigation and Theoretical Prediction of Self-Ignition Characteristics of Coarse Coal Stockpiles. Journal of Loss Prevention in the Process Industries, 26, Sayfa 236- 244.
  • Zhu, J., He, N., Li, D., 2012. The Relationship Between Oxygen Consumption Rate and Temperature During Coal Spontaneous Combustion. Safety Science, 50, 842-845.
Primary Language tr
Subjects Engineering, Multidisciplinary
Journal Section Collection
Authors

Orcid: 0000-0001-5960-013X
Author: Serkan İnal (Primary Author)

Orcid: 0000-0002-4942-3085
Author: Kerim Aydıner

Dates

Publication Date: June 1, 2019

Bibtex @review { madencilik580158, journal = {Bilimsel Madencilik Dergisi}, issn = {2564-7024}, address = {TMMOB Maden Mühendisleri Odası}, year = {2019}, volume = {58}, pages = {145 - 165}, doi = {10.30797/madencilik.580158}, title = {KÖMÜRÜN KENDİLİĞİNDEN YANMASI VE ETKİLEYEN FAKTÖRLER}, key = {cite}, author = {İnal, Serkan and Aydıner, Kerim} }
APA İnal, S , Aydıner, K . (2019). KÖMÜRÜN KENDİLİĞİNDEN YANMASI VE ETKİLEYEN FAKTÖRLER. Bilimsel Madencilik Dergisi, 58 (2), 145-165. DOI: 10.30797/madencilik.580158
MLA İnal, S , Aydıner, K . "KÖMÜRÜN KENDİLİĞİNDEN YANMASI VE ETKİLEYEN FAKTÖRLER". Bilimsel Madencilik Dergisi 58 (2019): 145-165 <http://dergipark.org.tr/madencilik/issue/46074/580158>
Chicago İnal, S , Aydıner, K . "KÖMÜRÜN KENDİLİĞİNDEN YANMASI VE ETKİLEYEN FAKTÖRLER". Bilimsel Madencilik Dergisi 58 (2019): 145-165
RIS TY - JOUR T1 - KÖMÜRÜN KENDİLİĞİNDEN YANMASI VE ETKİLEYEN FAKTÖRLER AU - Serkan İnal , Kerim Aydıner Y1 - 2019 PY - 2019 N1 - doi: 10.30797/madencilik.580158 DO - 10.30797/madencilik.580158 T2 - Bilimsel Madencilik Dergisi JF - Journal JO - JOR SP - 145 EP - 165 VL - 58 IS - 2 SN - 2564-7024- M3 - doi: 10.30797/madencilik.580158 UR - https://doi.org/10.30797/madencilik.580158 Y2 - 2019 ER -
EndNote %0 Scientific Mining Journal KÖMÜRÜN KENDİLİĞİNDEN YANMASI VE ETKİLEYEN FAKTÖRLER %A Serkan İnal , Kerim Aydıner %T KÖMÜRÜN KENDİLİĞİNDEN YANMASI VE ETKİLEYEN FAKTÖRLER %D 2019 %J Bilimsel Madencilik Dergisi %P 2564-7024- %V 58 %N 2 %R doi: 10.30797/madencilik.580158 %U 10.30797/madencilik.580158
ISNAD İnal, Serkan , Aydıner, Kerim . "KÖMÜRÜN KENDİLİĞİNDEN YANMASI VE ETKİLEYEN FAKTÖRLER". Bilimsel Madencilik Dergisi 58 / 2 (June 2019): 145-165. https://doi.org/10.30797/madencilik.580158
AMA İnal S , Aydıner K . KÖMÜRÜN KENDİLİĞİNDEN YANMASI VE ETKİLEYEN FAKTÖRLER. Mining. 2019; 58(2): 145-165.
Vancouver İnal S , Aydıner K . KÖMÜRÜN KENDİLİĞİNDEN YANMASI VE ETKİLEYEN FAKTÖRLER. Bilimsel Madencilik Dergisi. 2019; 58(2): 165-145.