BibTex RIS Kaynak Göster

Mikrobiyal Kalsiyum Karbonat Oluşum Mekanizmaları Ve Uygulama Alanları

Yıl 2016, Cilt: 28 Sayı: 2, 70 - 80, 18.07.2016
https://doi.org/10.7240/mufbed.73209

Öz

Kalsiyum karbonat, doğada kendiliğinden kimyasal ve biyokimyasal reaksiyon olarak gerçekleşmektedir. Çimentolama ve metal iyonlarının çöktürülmesinde önemli rol oynamaktadır. Dünya nüfusunun artmasına bağlı olarak, kentleşme oranının yükselmesiyle ihtiyaç duyulan konut ve iş alanı sayısı artmıştır. Bu nedenle, dayanaksız inşaat alanlarının, gerekli mühendislik uygulamaları ile sağlamlaştırılması gerekliliği ortaya çıkmıştır. Günümüzde, çoğu sağlamlaştırma teknikleri arasında biyolojik sağlamlaştırma etkili bir metodtur. Bu bağlamda, son yıllarda, inşaat ve çevre alanında biyokimyasal kalsiyum karbonat oluşumu ile ilgili çalışmalar hız kazanmıştır. Mikrobiyal kalsiyum karbonat oluşumu, alkolofilik mikroorganzimalar tarafından çeşitli biyokimyasal mekanizmalar ile gerçekleştirilen bir süreçtir. Bu süreç ile ilgili, inşaat mühendisliği alanında çatlak onarılması, alt yapısı yetersiz bölgelerin iyileştirilmesi, inşaat yapılarındaki sıvıya bağlı basıncın azaltılması, tarihi eserlerin onarılması, gibi uygulamalarda kullanılmasına ilişkin çalışmalar yapılmaktadır. Ayrıca, çevre mühendisliği alanında özellikle endüstriyel atıkların doğaya ve insana verdikleri zararı ortadan kaldırmak için ağır metallerin çöktürülerek uzaklaştırılması işleminde mikrobiyal kalsiyum karbonat oluşum metodu kullanılmaktadır.

Bu derlemede, mikrobiyal kalsiyum karbonat oluşum mekanizmaları hakkında bilgi verilecek ve bu mekanizmalar ile son yıllarda sıklıkla adı geçen inşaat ve çevre mühendisliği alanında ağır metallerin çöktürülerek uzaklaştırılması, biyoçimentolama ve biyoonarım üzerine yapılan araştırmalar ele alınacaktır. Bu iki alanda mevcut veya potansiyel uygulamaları özetlemek ve potansiyel biyoçimentolama ve biyoonarım için etkili prokaryotik organizmalardan bahsedilecektir.

Kaynakça

  • ) Abdel- Gawwad H.A. Abo-El-Enein S.A., Ali A.H., Talkhan F.N. (2012). Utilization of Microbial İnduced Calcite Precipitation for Sand Consalidation and Mortar Crack Remediation, HBRC Jornal 8, 185-192.
  • ) Achal V, Pan X, Zhang D, Fu QL. (2012). Bioremediation of Pb-contaminated soil based on microbially induced calcite precipitation. J Microbiol Biotechnol; 22:244–7.
  • ) Achal V., Pan X., Özyurt N. April (2011). Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation, Ecological Engineering, Volume 37, Issue 4, Pages 554-559.
  • ) Achal, V., & Mukherjee, A. (2015). A review of microbial precipitation for sustainable construction. Construction and Building Materials, 93, 1224-1235.
  • ) Achal, V., Mukherjee, A., Kumari, D., Zhang, Q. (2015). Biomineralization for sustainable construction–A review of processes and applications. Earth-Science Reviews, 148, 1-17.
  • ) Al Smadi B.M., Al-Zboon K. K. ve Shatnawi K. M. (2009). Assessment of Air Pollutants Emissions from a Cement Plant: A Case Study in Jordan Jordan Journal of Civil Engineering, Volume 3, No. 3.
  • ) Almahamedh, H. H. (2013). Sulfate reducing bacteria influenced calcium carbonate precipitation. In CORROSION 2013. NACE International.
  • ) Al-Thawadi, S. M. (2011). Ureolytic bacteria and calcium carbonate formation as a mechanism of strength enhancement of sand. J. Adv. Sci. Eng. Res, 1(1), 98-114.
  • ) Baumgartner, L. K., Reid, R. P., Dupraz, C., Decho, A. W., Buckley, D. H., Spear, J. R. ve Visscher, P. T. (2006). Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sedimentary Geology, 185(3), 131-145.
  • ) Belie N., Muynk W., Verbeken K., Verstraete W. (2010). Influence of Urea and Calcium Dosage on the Effectiveness of Bacterially İnduced Carbonate Precipitation on Limestone, Ecological Engineering, 36, 99-111.
  • ) Braissant, O., Decho, A. W., Dupraz, C., Glunk, C., Przekop, K. M. ve Visscher, P. T. (2007). Exopolymeric substances of sulfate‐reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology, 5(4), 401-41.
  • ) Cañveras J. C., Sanchez-Moral S., Sloer V., Saiz-Jimenez C. (2001). Microorganisms and Microbially Induced Fabrics in Cave Walls, Geomicrobiology Journal Volume 18, Issue 3, pages 223-240.
  • ) Chou C., Seagren E.A., Aydilek A.H., Lai M. (2010). “Biocalcification of Sand through Ureolysis”, J. of Geotech. and Geoenvironmental Engineering, ASCE, in press.
  • ) Clifton J.R., Frohnsdorff G.J.C. (1982). Stone consolidating materials: a status report. In: Conservation of Historic Stone Buildings and Monuments, National Academy Press, Washington, DC, pp. 287–311.
  • ) Coelho, L. M., Rezende, H. C., Coelho, L. M., de Sousa, P. A., Melo, D. F. ve Coelho, N. M. (2015). Bioremediation of Polluted Waters Using Microorganisms.
  • ) Cuzman, O. A., Rescic, S., Richter, K., Wittig, L. ve Tiano, P. (2015). Sporosarcina pasteurii use in extreme alkaline conditions for recycling solid industrial wastes. Journal of biotechnology, 214, 49-56.
  • ) ÇED Rehberi – Çimento Fabrikaları. (Haziran 2009). T.C. Çevre ve Orman Bakanlığı.
  • ) Çimento Sektörü Raporu(2015/1).(2015). Sektörel Raporlar ve Analizler Serisi. T.C. Bilim Sanayi ve Teknoloji Bakanlığı.
  • ) De Belie, N. ve De Muynck, W. ( November 2008). Crack repair in concrete using biodeposition. In Proceedings of the International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR), Cape Town, South Africa,pp. 291-292.
  • ) De Muynck W, Cox K, De Belie N, Verstraete W. (2008). Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr Build Mater; 22:875–85.
  • ) De Muynck, W., De Belie, N. ve Verstraete, W. (2010). Microbial carbonate precipitation in construction materials: a review. Ecological Engineering, 36(2), 118-136.
  • ) Dejong J.T., ASCE M., Proto C., ASCE S.M., Kuo M., Gomez M. (2014). Bacteria, Bio-films, and İnvertebrates the Next Generation of Geotechnical Engineers?, Geo-Congress 2014 Technical Papers, GSP 234.
  • ) Dejong, J.T., Fritzges M.B., Nusslein K. (2006). “Microbially Induced Cementation to Control Sand Response to Undrained Shear”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, (11), 1381-1392.
  • ) Del Río, A. V., Buys, B., Campos, J. L., Méndez, R. ve Mosquera-Corral, A. (2015). Optimizing upflow velocity and calcium precipitation in denitrifying granular systems. Process Biochemistry, 50(10), 1656-1661.
  • ) Dhami, N. K., Reddy, M. S. ve Mukherjee, A. (2013). Biomineralization of calcium carbonates and their engineered applications: a review. Front. Microbiol, 4(314), 10-3389.
  • ) Dünya Bankası. (2012). “Population growth (annual %) (İngilizce) - Nüfus Büyüme (yıllık %)”. Erişim tarihi: 24 Nisan 2016. https://www.google.com.tr/publicdata/ e x p l o r e ? d s = d 5 b n c p p j o f 8 f 9 _ & m e t _ y = s p _ p o p _ grow&hl=tr&dl=tr.
  • ) Erşan, Y. Ç., De Belie, N. ve Boon, N. (2015). Microbially induced CaCO 3 precipitation through denitrification: an optimization study in minimal nutrient environment. Biochemical Engineering Journal, 101, 108- 118.
  • ) Hall-Stoodley L., Costerton J.W, Stoodley P. (2004). Bacterial biofilms: from the natural environment to infectious diseases, Nat Rev Microbiol., 2(2):95-108.
  • ) Hammes F, Boon N, Clement G, de Villiers J, Siciliano SD, Verstraete W. (2003). Molecular biochemical and ecological characterisation of a bio-catalytic calcification reactor. Appl Microbiol Biotechnol;62:191–201.
  • ) Hooda P.S., Shaheen S.M., Tsadilas C.D. (2014). Opportunities and Challenges in the Use of Coal Fly Ash for Soil İmprovement: A Review, Journal of Enviromental Management 145, 249-267.
  • ) Ivanov, V. ve Chu, J. (2008). Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Reviews in Environmental Science and Bio/Technology, 7(2), 139-153.
  • ) Jimenez-Lopez, C., Jroundi, F., Rodríguez-Gallego, M., Arias, J. M. ve Gonzalez-Muñoz, M. T. (2007). Biomineralization induced by Myxobacteria. Communicating current research and educational topics and trends in applied microbiology, Formatex, Microbiology Series, (1), 1.
  • ) Jyothsna P., Usha J., Pallavi P. (2015). Calcium Carbonate precipitation based improvement of concrete throughmicrobiologically induced precipitation, GJTE- Vol(2)-Issue(2).
  • ) Kamennaya, N. A. (2012). Ajo-Franklin, C. M., Northen, T. Ve Jansson, C. Cyanobacteria as biocatalysts for carbonate mineralization. Minerals, 2(4), 338-364.
  • ) Kapkaç, F. (2012). Çimento Çeşitleri, Özellikleri, Hammaddeleri Ve Üretim Aşamaları. Erişim Tarihi: 25.04.2016, Maden Tetkik ve Arama Genel Müdürlüğü, Maden Etüt ve Arama Dairesi Başkanlığı – Ankara, http:// www.mta.gov.tr/v2.0/birimler/redaksiyon/ekonomi- bultenleri/2012_16/223.pdf.
  • ) Karol RH. (2003). Chemical grouting and soil stabilization, 3rd edn. M. Dekker, New york.
  • ) Khaliq, W. ve Ehsan, M. B. (2016). Crack healing in concrete using various bio influenced self-healing techniques. Construction and Building Materials, 102, 349- 357.
  • ) Kim, H. K., Park, S. J., Han, J. I. ve Lee, H. K. (2013). Microbially mediated calcium carbonate precipitation on normal and lightweight concrete. Construction and Building Materials, 38, 1073-1082.
  • ) Knoll, A. H. (2003). Biomineralization and evolutionary history. Rev. Mineral. Geochem. 54, 329–356.
  • ) Li, Q., Csetenyi, L., Paton, G. I. ve Gadd, G. M. (2015). CaCO3 and SrCO3 bioprecipitation by fungi isolated from calcareous soil. Environmental microbiology, 17(8), 3082- 3097.
  • ) Mahanty, B., Kim, S. ve Kim, C. G. (2014). Biokinetic modeling of ureolysis in Sporosarcina pasteurii and its integration into a numerical chemodynamic biocalcification model. Chemical Geology, 383, 13-25.
  • ) Marlowe I. ve Mansfield D. 2002. Toward a sustainable cement industry, environment, health and safety performance improvement, World Business Council for Sustainable Development, Substudy 10.
  • ) Mavromatis, V., Pearce, C. R., Shirokova, L. S., Bundeleva, I. A., Pokrovsky, O. S., Benezeth, P. ve Oelkers, E. H. (2012). Magnesium isotope fractionation during hydrous magnesium carbonate precipitation with and without cyanobacteria. Geochimica et Cosmochimica Acta, 76, 161- 174.
  • ) Mitchell J. K., Santamarina J.C. (2005). Biological considerations in geotechnical engineering. Journal of geotechnical and geoenvironmental engineering, 131. 10, 1222-1233.
  • ) Nancharaiah, Y. V. ve Lens, P. N. (2015). Selenium biomineralization for biotechnological applications. Trends in biotechnology, 33(6), 323-330.
  • ) Özay C. ve Mammadov R. (2013). Ağır Metaller ve Süs Bitkilerinin Fitoremediasyonda Kullanılabilirliği. BAÜ Fen Bil. Enst. Dergisi Cilt 15(1) 67-76.
  • ) Paassen L.A. (2009). Biogrout, ground improvement by microbial induced carbonate precipitation. Ph D. thesis. Holland, Delft University of Technology.
  • ) Patro Sanjaya K., Chandra K.S, Sugandha S., Chand S., Sahu S.K., Manimaran S. (2015). Effect of bacteria on the properties of concrete using Portland slag cement, Proceedings of the National Conference on Recent Advances and Future Prospects in Civil Engineering (RAFPCE-15), 89- 98.
  • ) Qıan C., Luo M., LI R., Rong H. (2015). Efficiency of concrete crack-healing based on biological carbonate precipitation. Journal of Wuhan University of Technology- Mater. Sci. Ed., 30(6), 1255-1259.
  • ) Rahman, M. A. ve Halfar, J. (2014). First evidence of chitin in calcified coralline algae: new insights into the calcification process of Clathromorphum compactum. Scientific reports, 4.
  • ) Ramachandran S.K., Ramakrishnan V., Bang S.S. (2001). “Remediation of Concrete Using Microorganisms”, ACI Materials Journal, Vol. 98, (1), 3-9.
  • ) Reddy M.S., Achal V., Mukerjee A. (2013). Biogenic Treatment İmproves the Durability and Remediates the Cracks of Concrete Structures, Construction and Building Materials, 48, 1-5.
  • ) Rodriguez-Navarro, C., Rodriguez-Gallego, M., Chekroun, K. B. ve Gonzalez-Munoz, M. T. (2003). Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Applied and Environmental Microbiology, 69(4), 2182-2193.
  • ) Shackelford C.D., Jefferis S.A. (2000). “Geoenvironmental Engineering for In Situ Remediation”, Int. Conf. on Geotech. and Geoenv. Eng., Melbourne, Australia, Technomic Publ. Co., Inc., Lancaster, PA, Vol. 1, 121-185.
  • ) Ståhlberg, C., Bastviken, D., Svensson, B. H. ve Rahm, L. (2006). Mineralisation of organic matter in coastal sediments at different frequency and duration of resuspension. Estuarine, Coastal and Shelf Science, 70(1), 317-325.
  • ) Tiano P, Biagiotti L, Mastromei G. (1999). Bacterial bio- mediated calcite precipitation for monumental stones conservation: methods of evaluation. J Microbiol Methods 1999;36:139–45.
  • ) Tobler, D. J., Cuthbert, M. O., Greswell, R. B., Riley, M. S., Renshaw, J. C., Handley-Sidhu, S. ve Phoenix, V. R. (2011). Comparison of rates of ureolysis between Sporosarcina pasteurii and an indigenous groundwater community under conditions required to precipitate large volumes of calcite. Geochimica et Cosmochimica Acta, 75(11), 3290- 3301.
  • ) Vaithiyalingam, S. U., Gnanasekaran, D., Gopalakrishnan, S., Lakshmanan, U. ve Prabaharan, D. (2014). Biocalcification Mediated Remediation of Calcium Rich Ossein Effluent by Bioremediation & Biodegradation, 2014.
  • Cyanobacteria. Journal of
  • ) Vekariya M.S. ve Pitroda J. September (2013). Bacterial Concrete: New Era For Construction Industry, International Journal of Engineering Trends and Technology (IJETT), Volume 4 Issue 9.
  • ) Wang, J. Y., Soens, H., Verstraete, W. ve De Belie, N. (2014). Self-healing concrete by use of microencapsulated bacterial spores. Cement and Concrete Research, 56, 139-152.
  • ) Warren L.A., Maurice P.A., Parmar N., Ferris F.G. (2001). Microbially mediated calcium carbonate precipitation: implications for interpreting calcite precipitation and for solid- phase capture of inorganic contaminants, Geomicrobiology Journal, 18.1:93-115.
  • ) Zhan, Q. ve Qian, C. (2016). Microbial-induced remediation of Zn 2+ pollution based on the capture and utilization of carbon dioxide. Electronic Journal of Biotechnology, 19, 29- 32.
Toplam 63 adet kaynakça vardır.

Ayrıntılar

Bölüm Araştırma Makaleleri
Yazarlar

Nazlıhan Yıldırım

Yeşim Gürtuğ

Cenk Sesal

Yayımlanma Tarihi 18 Temmuz 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 28 Sayı: 2

Kaynak Göster

APA Yıldırım, N., Gürtuğ, Y., & Sesal, C. (2016). Mikrobiyal Kalsiyum Karbonat Oluşum Mekanizmaları Ve Uygulama Alanları. Marmara Fen Bilimleri Dergisi, 28(2), 70-80. https://doi.org/10.7240/mufbed.73209
AMA Yıldırım N, Gürtuğ Y, Sesal C. Mikrobiyal Kalsiyum Karbonat Oluşum Mekanizmaları Ve Uygulama Alanları. MFBD. Ekim 2016;28(2):70-80. doi:10.7240/mufbed.73209
Chicago Yıldırım, Nazlıhan, Yeşim Gürtuğ, ve Cenk Sesal. “Mikrobiyal Kalsiyum Karbonat Oluşum Mekanizmaları Ve Uygulama Alanları”. Marmara Fen Bilimleri Dergisi 28, sy. 2 (Ekim 2016): 70-80. https://doi.org/10.7240/mufbed.73209.
EndNote Yıldırım N, Gürtuğ Y, Sesal C (01 Ekim 2016) Mikrobiyal Kalsiyum Karbonat Oluşum Mekanizmaları Ve Uygulama Alanları. Marmara Fen Bilimleri Dergisi 28 2 70–80.
IEEE N. Yıldırım, Y. Gürtuğ, ve C. Sesal, “Mikrobiyal Kalsiyum Karbonat Oluşum Mekanizmaları Ve Uygulama Alanları”, MFBD, c. 28, sy. 2, ss. 70–80, 2016, doi: 10.7240/mufbed.73209.
ISNAD Yıldırım, Nazlıhan vd. “Mikrobiyal Kalsiyum Karbonat Oluşum Mekanizmaları Ve Uygulama Alanları”. Marmara Fen Bilimleri Dergisi 28/2 (Ekim 2016), 70-80. https://doi.org/10.7240/mufbed.73209.
JAMA Yıldırım N, Gürtuğ Y, Sesal C. Mikrobiyal Kalsiyum Karbonat Oluşum Mekanizmaları Ve Uygulama Alanları. MFBD. 2016;28:70–80.
MLA Yıldırım, Nazlıhan vd. “Mikrobiyal Kalsiyum Karbonat Oluşum Mekanizmaları Ve Uygulama Alanları”. Marmara Fen Bilimleri Dergisi, c. 28, sy. 2, 2016, ss. 70-80, doi:10.7240/mufbed.73209.
Vancouver Yıldırım N, Gürtuğ Y, Sesal C. Mikrobiyal Kalsiyum Karbonat Oluşum Mekanizmaları Ve Uygulama Alanları. MFBD. 2016;28(2):70-8.

Marmara Fen Bilimleri Dergisi

e-ISSN : 2146-5150

 

 

MU Fen Bilimleri Enstitüsü

Göztepe Yerleşkesi, 34722 Kadıköy, İstanbul
E-posta: fbedergi@marmara.edu.tr