Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 6 Sayı: 3, 32 - 40, 30.03.2019
https://doi.org/10.17546/msd.505192

Öz

Kaynakça

  • 1. Engel, J., Jr., Pitkanen, A., Loeb, J.A., Dudek, F.E., Bertram, E.H., 3rd, Cole, A.J., Moshe, S.L., Wiebe, S., Jensen, F.E., Mody, I., Nehlig, A. and Vezzani, A. Epilepsy biomarkers. Epilepsia 2013; 54 Suppl 4:61-69.
  • 2. Wasterlain, C.G., Fujikawa, D.G., Penix, L. and Sankar, R. Pathophysiological mechanisms of brain damage from status epilepticus. Epilepsia 1993; 34 Suppl 1:S37-53.
  • 3. Toro, C.T., Hallak, J.E., Dunham, J.S., Leite, J.P., Sakamoto, A.C., Guarnieri, R., Fong, V. and Deakin, J.F. The NR1 N-methyl-D-aspartate subunit and brain-derived neurotrophic factor in temporal lobe epilepsy hippocampus: a comparison of patients with and without coexisting psychiatric symptoms. Epilepsia 2007; 48:2352-2356.
  • 4. Lamers, K.J., Vos, P., Verbeek, M.M., Rosmalen, F., van Geel, W.J. and van Engelen, B.G. Protein S-100B, neuron-specific enolase (NSE), myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) in cerebrospinal fluid (CSF) and blood of neurological patients. Brain Res Bull 2003; 61:261-264.
  • 5. Gurnett, C.A., Landt, M. and Wong, M. Analysis of cerebrospinal fluid glial fibrillary acidic protein after seizures in children. Epilepsia 2003; 44:1455-1458.
  • 6. Rejdak, K., Kuhle, J., Ruegg, S., Lindberg, R.L., Petzold, A., Sulejczak, D., Papuc, E., Rejdak, R., Stelmasiak, Z. and Grieb, P. Neurofilament heavy chain and heat shock protein 70 as markers of seizure-related brain injury. Epilepsia 2012; 53:922-927.
  • 7. Royds, J.A., Davies-Jones, G.A., Lewtas, N.A., Timperley, W.R. and Taylor, C.B. Enolase isoenzymes in the cerebrospinal fluid of patients with diseases of the nervous system. J Neurol Neurosurg Psychiatry 1983; 46:1031-1036.
  • 8. Quirico-Santos, T., Nascimento Mello, A., Casimiro Gomes, A., de Carvalho, L.P., de Souza, J.M. and Alves-Leon, S. Increased metalloprotease activity in the epileptogenic lesion--Lobectomy reduces metalloprotease activity and urokinase-type uPAR circulating levels. Brain Res 2013; 1538:172-181.
  • 9. Palmio, J., Suhonen, J., Keranen, T., Hulkkonen, J., Peltola, J. and Pirttila, T. Cerebrospinal fluid tau as a marker of neuronal damage after epileptic seizure. Seizure 2009; 18:474-477.
  • 10. Palmio, J., Keranen, T., Alapirtti, T., Hulkkonen, J., Makinen, R., Holm, P., Suhonen, J. and Peltola, J. Elevated serum neuron-specific enolase in patients with temporal lobe epilepsy: a video-EEG study. Epilepsy Res 2008; 81:155-160.
  • 11. Calik, M., Abuhandan, M., Sonmezler, A., Kandemir, H., Oz, I., Taskin, A., Selek, S. and Iscan, A. Elevated serum S-100B levels in children with temporal lobe epilepsy. Seizure 2013; 22:99-102.
  • 12. Vezzani, A., French, J., Bartfai, T. and Baram, T.Z. The role of inflammation in epilepsy. Nat Rev Neurol 2011; 7:31-40.
  • 13. Heinemann, U., Kaufer, D. and Friedman, A. Blood-brain barrier dysfunction, TGFbeta signaling, and astrocyte dysfunction in epilepsy. Glia 2012; 60:1251-1257.
  • 14. Erbas, O., Celik, A.O., Cınar, B.P., Solmaz, V. and Aksoy, D. Doksisiklinin pentilentetrazol indükte nöbetler üzerine olan olumlu etkisinin incelenmesi. Presentation to affirmative effect of doxcycyline in pentylenetetrazole induced seizures models. Epilepsi 2014; 20:61-66.
  • 15. Ara, J., Mirapeix, E., Arrizabalaga, P., Rodriguez, R., Ascaso, C., Abellana, R., Font, J. and Darnell, A. Circulating soluble adhesion molecules in ANCA-associated vasculitis. Nephrol Dial Transplant 2001; 16:276-285.
  • 16. Goke, M., Hoffmann, J.C., Evers, J., Kruger, H. and Manns, M.P. Elevated serum concentrations of soluble selectin and immunoglobulin type adhesion molecules in patients with inflammatory bowel disease. J Gastroenterol 1997; 32:480-486.
  • 17. Tamagawa-Mineoka, R., Katoh, N. and Kishimoto, S. Platelet activation in patients with psoriasis: increased plasma levels of platelet-derived microparticles and soluble P-selectin. J Am Acad Dermatol 2010; 62:621-626.
  • 18. Huo, Y. and Ley, K. Adhesion molecules and atherogenesis. Acta Physiol Scand 2001; 173:35-43.
  • 19. Rossi, B., Angiari, S., Zenaro, E., Budui, S.L. and Constantin, G. Vascular inflammation in central nervous system diseases: adhesion receptors controlling leukocyte-endothelial interactions. J Leukoc Biol 2011; 89:539-556.
  • 20. Gearing, A.J. and Newman, W. Circulating adhesion molecules in disease. Immunol Today 1993; 14:506-512.
  • 21. Librizzi, L., Regondi, M.C., Pastori, C., Frigerio, S., Frassoni, C. and de Curtis, M. Expression of adhesion factors induced by epileptiform activity in the endothelium of the isolated guinea pig brain in vitro. Epilepsia 2007; 48:743-751.
  • 22. Fabene, P.F., Navarro Mora, G., Martinello, M., Rossi, B., Merigo, F., Ottoboni, L., Bach, S., Angiari, S., Benati, D., Chakir, A., Zanetti, L., Schio, F., Osculati, A., Marzola, P., Nicolato, E., Homeister, J.W., Xia, L., Lowe, J.B., McEver, R.P., Osculati, F., Sbarbati, A., Butcher, E.C. and Constantin, G. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med 2008; 14:1377-1383.
  • 23. Akiyama, H., Tooyama, I., Kondo, H., Ikeda, K., Kimura, H., McGeer, E.G. and McGeer, P.L. Early response of brain resident microglia to kainic acid-induced hippocampal lesions. Brain Res 1994; 635:257-268.
  • 24. Nakahara, H., Konishi, Y., Beach, T.G., Yamada, N., Makino, S. and Tooyama, I. Infiltration of T lymphocytes and expression of icam-1 in the hippocampus of patients with hippocampal sclerosis. Acta Histochem Cytochem 2010; 43:157-162.
  • 25. Wang, W., Wang, L., Luo, J., Xi, Z., Wang, X., Chen, G. and Chu, L. Role of a neural cell adhesion molecule found in cerebrospinal fluid as a potential biomarker for epilepsy. Neurochem Res 2012; 37:819-825.
  • 26. Pollard, J.R., Eidelman, O., Mueller, G.P., Dalgard, C.L., Crino, P.B., Anderson, C.T., Brand, E.J., Burakgazi, E., Ivaturi, S.K. and Pollard, H.B. The TARC/sICAM5 Ratio in Patient Plasma is a Candidate Biomarker for Drug Resistant Epilepsy. Front Neurol 2012; 3:181.
  • 27. Luo, J., Wang, W., Xi, Z., Dan, C., Wang, L., Xiao, Z. and Wang, X. Concentration of Soluble Adhesion Molecules in Cerebrospinal Fluid and Serum of Epilepsy Patients. J Mol Neurosci 2014.
  • 28. Deneva-Koycheva, T.I., Vladimirova-Kitova, L.G., Angelova, E.A. and Tsvetkova, T.Z. Serum levels of siCAM-1, sVCAM-1, sE-selectin, sP-selectin in healthy Bulgarian people. Folia Med (Plovdiv) 2011; 53:22-28.
  • 29. Trinka, E., Cock, H., Hesdorffer, D., Rossetti, A.O., Scheffer, I.E., Shinnar, S., Shorvon, S. and Lowenstein, D.H. A definition and classification of status epilepticus - Report of the ILAE Task Force on Classification of Status Epilepticus. Epilepsia 2015; 56:1515-1523.
  • 30. Thomas, J.E., Reagan, T.J. and Klass, D.W. Epilepsia partialis continua. A review of 32 cases. Arch Neurol 1977; 34:266-275.
  • 31. Kaplan, P.W. The EEG of status epilepticus. J Clin Neurophysiol 2006; 23:221-229.
  • 32. Mayer, S.A., Claassen, J., Lokin, J., Mendelsohn, F., Dennis, L.J. and Fitzsimmons, B.F. Refractory status epilepticus: frequency, risk factors, and impact on outcome. Arch Neurol 2002; 59:205-210.
  • 33. Atmaca, M.M., Bebek, N., Baykan, B., Gokyigit, A. and Gurses, C. Predictors of outcomes and refractoriness in status epilepticus: A prospective study. Epilepsy Behav 2017; 75:158-164.
  • 34. Vezzani, A., Aronica, E., Mazarati, A. and Pittman, Q.J. Epilepsy and brain inflammation. Exp Neurol 2013; 244:11-21.
  • 35. Ravizza, T., Gagliardi, B., Noe, F., Boer, K., Aronica, E. and Vezzani, A. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 2008; 29:142-160.
  • 36. Aronica, E., Boer, K., van Vliet, E.A., Redeker, S., Baayen, J.C., Spliet, W.G., van Rijen, P.C., Troost, D., da Silva, F.H., Wadman, W.J. and Gorter, J.A. Complement activation in experimental and human temporal lobe epilepsy. Neurobiol Dis 2007; 26:497-511.
  • 37. Rasmussen, T., Olszewski, J. and Lloydsmith, D. Focal seizures due to chronic localized encephalitis. Neurology 1958; 8:435-445.
  • 38. Rogers, S.W., Andrews, P.I., Gahring, L.C., Whisenand, T., Cauley, K., Crain, B., Hughes, T.E., Heinemann, S.F. and McNamara, J.O. Autoantibodies to glutamate receptor GluR3 in Rasmussen's encephalitis. Science 1994; 265:648-651.
  • 39. Lohler, J. and Peters, U.H. [Epilepsia partialis continua (Kozevnikov epilepsy)]. Fortschr Neurol Psychiatr Grenzgeb 1974; 42:165-212.

Could sP-Selectin and sICAM-1 be potential biomarkers in status epilepticus?

Yıl 2019, Cilt: 6 Sayı: 3, 32 - 40, 30.03.2019
https://doi.org/10.17546/msd.505192

Öz





Objective:
To investigate whether soluble P-selectin (sP-selectin) and soluble
intercellular adhesion molecule-1 (sICAM-1) might be potential biomarkers
that predict the course and prognosis of status epilepticus (SE).


Patients
and Methods:
Fourty-two adult patients with SE between February
2012 and December 2013 were included in the study. Clinical and demographic
features of the patients were recorded and surviving patients were followed
for 13.6 ± 4.6 months. Serum sICAM-1 and sP-selectin levels were measured during
SE or within 24 hours of SE, and compared with 28 subjects in the control
group.


Results:
Levels of serum sP-selectin and sICAM-1 were higher in the SE group compared
with the control group (P: 0.04 and P: 0.02, respectively). It was shown that
higher levels of serum sICAM-1 correlated with poor outcomes (P: 0.017) and
“ROC curve” analysis showed that levels higher than 457 ng/mL predicted poor
outcomes with 71% sensitivity and 68% specificity. Levels of serum
sP-selectin did not correlate with outcomes. Subgroup analyses revealed
levels of serum sICAM-1 were significantly higher in the epilepsia partialis
continua (EPC) group compared with the control group (P: 0.012) and levels of
serum sP-selectin were not different between subgroups and controls. Levels
of serum sP-selectin and sICAM-1 didn’t differ between subgroups of SE and
different etiologies. 


Conclusion:
Higher levels of serum sICAM-1 may predict poor outcome in SE, as a result
sICAM-1 may be used as a biomarker of the prognosis of SE in clinical
practice. The production of sICAM-1 may increase particularly in EPC.
However, no correlation was found between etiology of SE and serum level of
sICAM-1, even in patients with EPC. Serum level of sP-Selectin is not an
appropriate biomarker for the prognosis of SE. Serum levels of sICAM-1 and
sP-selectin are not appropriate biomarkers of refractory SE.


Kaynakça

  • 1. Engel, J., Jr., Pitkanen, A., Loeb, J.A., Dudek, F.E., Bertram, E.H., 3rd, Cole, A.J., Moshe, S.L., Wiebe, S., Jensen, F.E., Mody, I., Nehlig, A. and Vezzani, A. Epilepsy biomarkers. Epilepsia 2013; 54 Suppl 4:61-69.
  • 2. Wasterlain, C.G., Fujikawa, D.G., Penix, L. and Sankar, R. Pathophysiological mechanisms of brain damage from status epilepticus. Epilepsia 1993; 34 Suppl 1:S37-53.
  • 3. Toro, C.T., Hallak, J.E., Dunham, J.S., Leite, J.P., Sakamoto, A.C., Guarnieri, R., Fong, V. and Deakin, J.F. The NR1 N-methyl-D-aspartate subunit and brain-derived neurotrophic factor in temporal lobe epilepsy hippocampus: a comparison of patients with and without coexisting psychiatric symptoms. Epilepsia 2007; 48:2352-2356.
  • 4. Lamers, K.J., Vos, P., Verbeek, M.M., Rosmalen, F., van Geel, W.J. and van Engelen, B.G. Protein S-100B, neuron-specific enolase (NSE), myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) in cerebrospinal fluid (CSF) and blood of neurological patients. Brain Res Bull 2003; 61:261-264.
  • 5. Gurnett, C.A., Landt, M. and Wong, M. Analysis of cerebrospinal fluid glial fibrillary acidic protein after seizures in children. Epilepsia 2003; 44:1455-1458.
  • 6. Rejdak, K., Kuhle, J., Ruegg, S., Lindberg, R.L., Petzold, A., Sulejczak, D., Papuc, E., Rejdak, R., Stelmasiak, Z. and Grieb, P. Neurofilament heavy chain and heat shock protein 70 as markers of seizure-related brain injury. Epilepsia 2012; 53:922-927.
  • 7. Royds, J.A., Davies-Jones, G.A., Lewtas, N.A., Timperley, W.R. and Taylor, C.B. Enolase isoenzymes in the cerebrospinal fluid of patients with diseases of the nervous system. J Neurol Neurosurg Psychiatry 1983; 46:1031-1036.
  • 8. Quirico-Santos, T., Nascimento Mello, A., Casimiro Gomes, A., de Carvalho, L.P., de Souza, J.M. and Alves-Leon, S. Increased metalloprotease activity in the epileptogenic lesion--Lobectomy reduces metalloprotease activity and urokinase-type uPAR circulating levels. Brain Res 2013; 1538:172-181.
  • 9. Palmio, J., Suhonen, J., Keranen, T., Hulkkonen, J., Peltola, J. and Pirttila, T. Cerebrospinal fluid tau as a marker of neuronal damage after epileptic seizure. Seizure 2009; 18:474-477.
  • 10. Palmio, J., Keranen, T., Alapirtti, T., Hulkkonen, J., Makinen, R., Holm, P., Suhonen, J. and Peltola, J. Elevated serum neuron-specific enolase in patients with temporal lobe epilepsy: a video-EEG study. Epilepsy Res 2008; 81:155-160.
  • 11. Calik, M., Abuhandan, M., Sonmezler, A., Kandemir, H., Oz, I., Taskin, A., Selek, S. and Iscan, A. Elevated serum S-100B levels in children with temporal lobe epilepsy. Seizure 2013; 22:99-102.
  • 12. Vezzani, A., French, J., Bartfai, T. and Baram, T.Z. The role of inflammation in epilepsy. Nat Rev Neurol 2011; 7:31-40.
  • 13. Heinemann, U., Kaufer, D. and Friedman, A. Blood-brain barrier dysfunction, TGFbeta signaling, and astrocyte dysfunction in epilepsy. Glia 2012; 60:1251-1257.
  • 14. Erbas, O., Celik, A.O., Cınar, B.P., Solmaz, V. and Aksoy, D. Doksisiklinin pentilentetrazol indükte nöbetler üzerine olan olumlu etkisinin incelenmesi. Presentation to affirmative effect of doxcycyline in pentylenetetrazole induced seizures models. Epilepsi 2014; 20:61-66.
  • 15. Ara, J., Mirapeix, E., Arrizabalaga, P., Rodriguez, R., Ascaso, C., Abellana, R., Font, J. and Darnell, A. Circulating soluble adhesion molecules in ANCA-associated vasculitis. Nephrol Dial Transplant 2001; 16:276-285.
  • 16. Goke, M., Hoffmann, J.C., Evers, J., Kruger, H. and Manns, M.P. Elevated serum concentrations of soluble selectin and immunoglobulin type adhesion molecules in patients with inflammatory bowel disease. J Gastroenterol 1997; 32:480-486.
  • 17. Tamagawa-Mineoka, R., Katoh, N. and Kishimoto, S. Platelet activation in patients with psoriasis: increased plasma levels of platelet-derived microparticles and soluble P-selectin. J Am Acad Dermatol 2010; 62:621-626.
  • 18. Huo, Y. and Ley, K. Adhesion molecules and atherogenesis. Acta Physiol Scand 2001; 173:35-43.
  • 19. Rossi, B., Angiari, S., Zenaro, E., Budui, S.L. and Constantin, G. Vascular inflammation in central nervous system diseases: adhesion receptors controlling leukocyte-endothelial interactions. J Leukoc Biol 2011; 89:539-556.
  • 20. Gearing, A.J. and Newman, W. Circulating adhesion molecules in disease. Immunol Today 1993; 14:506-512.
  • 21. Librizzi, L., Regondi, M.C., Pastori, C., Frigerio, S., Frassoni, C. and de Curtis, M. Expression of adhesion factors induced by epileptiform activity in the endothelium of the isolated guinea pig brain in vitro. Epilepsia 2007; 48:743-751.
  • 22. Fabene, P.F., Navarro Mora, G., Martinello, M., Rossi, B., Merigo, F., Ottoboni, L., Bach, S., Angiari, S., Benati, D., Chakir, A., Zanetti, L., Schio, F., Osculati, A., Marzola, P., Nicolato, E., Homeister, J.W., Xia, L., Lowe, J.B., McEver, R.P., Osculati, F., Sbarbati, A., Butcher, E.C. and Constantin, G. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med 2008; 14:1377-1383.
  • 23. Akiyama, H., Tooyama, I., Kondo, H., Ikeda, K., Kimura, H., McGeer, E.G. and McGeer, P.L. Early response of brain resident microglia to kainic acid-induced hippocampal lesions. Brain Res 1994; 635:257-268.
  • 24. Nakahara, H., Konishi, Y., Beach, T.G., Yamada, N., Makino, S. and Tooyama, I. Infiltration of T lymphocytes and expression of icam-1 in the hippocampus of patients with hippocampal sclerosis. Acta Histochem Cytochem 2010; 43:157-162.
  • 25. Wang, W., Wang, L., Luo, J., Xi, Z., Wang, X., Chen, G. and Chu, L. Role of a neural cell adhesion molecule found in cerebrospinal fluid as a potential biomarker for epilepsy. Neurochem Res 2012; 37:819-825.
  • 26. Pollard, J.R., Eidelman, O., Mueller, G.P., Dalgard, C.L., Crino, P.B., Anderson, C.T., Brand, E.J., Burakgazi, E., Ivaturi, S.K. and Pollard, H.B. The TARC/sICAM5 Ratio in Patient Plasma is a Candidate Biomarker for Drug Resistant Epilepsy. Front Neurol 2012; 3:181.
  • 27. Luo, J., Wang, W., Xi, Z., Dan, C., Wang, L., Xiao, Z. and Wang, X. Concentration of Soluble Adhesion Molecules in Cerebrospinal Fluid and Serum of Epilepsy Patients. J Mol Neurosci 2014.
  • 28. Deneva-Koycheva, T.I., Vladimirova-Kitova, L.G., Angelova, E.A. and Tsvetkova, T.Z. Serum levels of siCAM-1, sVCAM-1, sE-selectin, sP-selectin in healthy Bulgarian people. Folia Med (Plovdiv) 2011; 53:22-28.
  • 29. Trinka, E., Cock, H., Hesdorffer, D., Rossetti, A.O., Scheffer, I.E., Shinnar, S., Shorvon, S. and Lowenstein, D.H. A definition and classification of status epilepticus - Report of the ILAE Task Force on Classification of Status Epilepticus. Epilepsia 2015; 56:1515-1523.
  • 30. Thomas, J.E., Reagan, T.J. and Klass, D.W. Epilepsia partialis continua. A review of 32 cases. Arch Neurol 1977; 34:266-275.
  • 31. Kaplan, P.W. The EEG of status epilepticus. J Clin Neurophysiol 2006; 23:221-229.
  • 32. Mayer, S.A., Claassen, J., Lokin, J., Mendelsohn, F., Dennis, L.J. and Fitzsimmons, B.F. Refractory status epilepticus: frequency, risk factors, and impact on outcome. Arch Neurol 2002; 59:205-210.
  • 33. Atmaca, M.M., Bebek, N., Baykan, B., Gokyigit, A. and Gurses, C. Predictors of outcomes and refractoriness in status epilepticus: A prospective study. Epilepsy Behav 2017; 75:158-164.
  • 34. Vezzani, A., Aronica, E., Mazarati, A. and Pittman, Q.J. Epilepsy and brain inflammation. Exp Neurol 2013; 244:11-21.
  • 35. Ravizza, T., Gagliardi, B., Noe, F., Boer, K., Aronica, E. and Vezzani, A. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 2008; 29:142-160.
  • 36. Aronica, E., Boer, K., van Vliet, E.A., Redeker, S., Baayen, J.C., Spliet, W.G., van Rijen, P.C., Troost, D., da Silva, F.H., Wadman, W.J. and Gorter, J.A. Complement activation in experimental and human temporal lobe epilepsy. Neurobiol Dis 2007; 26:497-511.
  • 37. Rasmussen, T., Olszewski, J. and Lloydsmith, D. Focal seizures due to chronic localized encephalitis. Neurology 1958; 8:435-445.
  • 38. Rogers, S.W., Andrews, P.I., Gahring, L.C., Whisenand, T., Cauley, K., Crain, B., Hughes, T.E., Heinemann, S.F. and McNamara, J.O. Autoantibodies to glutamate receptor GluR3 in Rasmussen's encephalitis. Science 1994; 265:648-651.
  • 39. Lohler, J. and Peters, U.H. [Epilepsia partialis continua (Kozevnikov epilepsy)]. Fortschr Neurol Psychiatr Grenzgeb 1974; 42:165-212.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makalesi
Yazarlar

Murat Mert Atmaca

Aysegul Telci Bu kişi benim

Ahmet Dirican Bu kişi benim

Candan Gurses Bu kişi benim

Yayımlanma Tarihi 30 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 6 Sayı: 3

Kaynak Göster

APA Atmaca, M. M., Telci, A., Dirican, A., Gurses, C. (2019). Could sP-Selectin and sICAM-1 be potential biomarkers in status epilepticus?. Medical Science and Discovery, 6(3), 32-40. https://doi.org/10.17546/msd.505192
AMA Atmaca MM, Telci A, Dirican A, Gurses C. Could sP-Selectin and sICAM-1 be potential biomarkers in status epilepticus?. Med Sci Discov. Mart 2019;6(3):32-40. doi:10.17546/msd.505192
Chicago Atmaca, Murat Mert, Aysegul Telci, Ahmet Dirican, ve Candan Gurses. “Could SP-Selectin and SICAM-1 Be Potential Biomarkers in Status Epilepticus?”. Medical Science and Discovery 6, sy. 3 (Mart 2019): 32-40. https://doi.org/10.17546/msd.505192.
EndNote Atmaca MM, Telci A, Dirican A, Gurses C (01 Mart 2019) Could sP-Selectin and sICAM-1 be potential biomarkers in status epilepticus?. Medical Science and Discovery 6 3 32–40.
IEEE M. M. Atmaca, A. Telci, A. Dirican, ve C. Gurses, “Could sP-Selectin and sICAM-1 be potential biomarkers in status epilepticus?”, Med Sci Discov, c. 6, sy. 3, ss. 32–40, 2019, doi: 10.17546/msd.505192.
ISNAD Atmaca, Murat Mert vd. “Could SP-Selectin and SICAM-1 Be Potential Biomarkers in Status Epilepticus?”. Medical Science and Discovery 6/3 (Mart 2019), 32-40. https://doi.org/10.17546/msd.505192.
JAMA Atmaca MM, Telci A, Dirican A, Gurses C. Could sP-Selectin and sICAM-1 be potential biomarkers in status epilepticus?. Med Sci Discov. 2019;6:32–40.
MLA Atmaca, Murat Mert vd. “Could SP-Selectin and SICAM-1 Be Potential Biomarkers in Status Epilepticus?”. Medical Science and Discovery, c. 6, sy. 3, 2019, ss. 32-40, doi:10.17546/msd.505192.
Vancouver Atmaca MM, Telci A, Dirican A, Gurses C. Could sP-Selectin and sICAM-1 be potential biomarkers in status epilepticus?. Med Sci Discov. 2019;6(3):32-40.