Year 2018, Volume 3, Issue 3, Pages 359 - 377 2018-10-10

Characterization and Construction of a Robust and Elastic Wall-Less Flow Phantom for High Pressure Flow Rate Using Doppler Ultrasound Applications

A. Oglat Ammar [1] , MZ Matjafri [2] , Nursakinah Suardi [3] , Mohammad A. Oqlat [4] , Ahmad A. Oqlat [5] , Mostafa A Abdelrahman [6] , O.F. Farhat [7] , Muntaser S. Ahmad [8] , Batool N. Alkhateb [9] , Sylvester J. Gemanam [10] , Sabri M. Shalbi [11] , Raed Abdalrheem [12] , Marwan Shipli [13] , Mohammad Marashdeh [14]

60 136

A Doppler ultrasound is a noninvasive test that can be used to estimate the blood flow through the vessels. Presently, few flow phantoms are being used to be qualified for long-term utilize and storage with high physiological flow rate Doppler ultrasound. The main drawback of the two hydrogel materials items (Konjac (K) and carrageenan (C) (KC)) that it is not fit for long-term storage and easy to deteriorate. Thus, this research study focuses on the characterization and construction of a robust and elastic wall-less flow phantom with suitable acoustical properties of TMM. The mechanisms for the fabrication of a wall-less flow phantom utilizing a physically strong material such as K, C, and gelatin (bovine skin)-based TMM were explained. In addition, the clinical ultrasound (Hitachi Avius (HI)) system was used as the main instrument for data acquisition. Vessel mimicking material (VMM) with dimensions of 15.0 mm depth equal to those of human common carotid arteries (CCA) were obtained with pulsatile flow. The acoustical properties (speed of sound and attenuation were 1533±2 m/s and 0.2 dB/cm. MHz, respectively) of a new TMM were agreed with the IEC 61685 standards. Furthermore, the velocity percentages error were decreased with increase in the Doppler angle (the lowest % error (3%) it was at 53◦). The gelatin from bovine skin was a proper material to be added to KC to enhance the strength of TMM during for long-term utilize and storage of high-flow of blood mimicking Fluid (BMF). This wall-less flow phantom will be a suitable instrument for examining in-vitro research studies.
BMF, TMM, Wall-less Flow Phantom, Acoustical Properties, Clinical Doppler Ultrasound (HI)
  • Bishop, C., Powell, S., & Rutt, D. (1986). Transcranial Doppler measurement of middle cerebral artery blood flow velocity: a validation study. Stroke, 17(5), 913-915.
  • Blake, J. R., Meagher, S., Fraser, K. H., Easson, W. J., & Hoskins, P. R. (2008). A method to estimate wall shear rate with a clinical ultrasound scanner. Ultrasound in medicine & biology, 34(5), 760-774.
  • Brands, P. J., Hoeks, A. P., Hofstra, L., & Reneman, R. S. (1995). A noninvasive method to estimate wall shear rate using ultrasound. Ultrasound in medicine & biology, 21(2), 171-185.
  • Browne, J. E. (2014). A review of Doppler ultrasound quality assurance protocols and test devices. Physica Medica, 30(7), 742-751.
  • Chen, J.-H., Pu, Y.-S., Liu, S.-P., & Chiu, T.-Y. (1993). Renal hemodynamics in patients with obstructive uropathy evaluated by duplex Doppler sonography. The Journal of urology, 150(1), 18-21.
  • Commission, I. E. (2001). Ultrasonics—Flow measurement systems: Flow test object. Draft IEC, 1685.
  • Doucette, J. W., Corl, P. D., Payne, H. M., Flynn, A. E., Goto, M., Nassi, M., & Segal, J. (1992). Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation, 85(5), 1899-1911.
  • Evans, D. H. (2000). Doppler signal analysis. Ultrasound in medicine & biology, 26, S13-S15.
  • Gerhard-Herman, M., Gardin, J. M., Jaff, M., Mohler, E., Roman, M., & Naqvi, T. Z. (2006). Guidelines for noninvasive vascular laboratory testing: a report from the American Society of Echocardiography and the Society for Vascular Medicine and Biology. Vascular Medicine, 11(3), 183-200.
  • Grant, E. G., Benson, C. B., Moneta, G. L., Alexandrov, A. V., Baker, J. D., Bluth, E. I., . . . Hertzberg, B. S. (2003). Carotid artery stenosis: gray-scale and Doppler US diagnosis—Society of Radiologists in Ultrasound Consensus Conference. Radiology, 229(2), 340-346.
  • Hoskins, P. (1999). A comparison of single-and dual-beam methods for maximum velocity estimation. Ultrasound in medicine & biology, 25(4), 583-592.
  • Hoskins, P. (2002). Ultrasound techniques for measurement of blood flow and tissue motion. Biorheology, 39(3, 4), 451-459.
  • Hoskins, P. R. (2008). Simulation and validation of arterial ultrasound imaging and blood flow. Ultrasound in Medicine and Biology, 34(5), 693-717.
  • Hoskins, P. R., Soldan, M., Fortune, S., Inglis, S., Anderson, T., & Plevris, J. (2010). Validation of endoscopic ultrasound measured flow rate in the azygos vein using a flow phantom. Ultrasound in medicine & biology, 36(11), 1957-1964.
  • Kenwright, D. A., Laverick, N., Anderson, T., Moran, C. M., & Hoskins, P. R. (2015). Wall-less flow phantom for high-frequency ultrasound applications. Ultrasound in medicine & biology, 41(3), 890-897.
  • Kenwright, D. A., Sadhoo, N., Rajagopal, S., Anderson, T., Moran, C. M., Hadoke, P. W., . . . Hoskins, P. R. (2014). Acoustic assessment of a konjac–carrageenan tissue-mimicking material at 5–60 MHz. Ultrasound in Medicine & Biology, 40(12), 2895-2902.
  • Kornet, L., Lambregts, J., Hoeks, A. P., & Reneman, R. S. (1998). Differences in near-wall shear rate in the carotid artery within subjects are associated with different intima-media thicknesses. Arteriosclerosis, thrombosis, and vascular biology, 18(12), 1877-1884.
  • Law, Y., Johnston, K., Routh, H., & Cobbold, R. (1989). On the design and evaluation of a steady flow model for Doppler ultrasound studies. Ultrasound in medicine & biology, 15(5), 505-516.
  • McNaughton, D. A., & Abu-Yousef, M. M. (2011). Doppler US of the Liver Made Simple 1. Radiographics, 31(1), 161-188.
  • Meagher, S., Poepping, T., Ramnarine, K., Black, R., & Hoskins, P. (2007). Anatomical flow phantoms of the nonplanar carotid bifurcation, part II: experimental validation with Doppler ultrasound. Ultrasound in Medicine & Biology, 33(2), 303-310.
  • Mehra, S. (2010). Role of Duplex Doppler sonography in arterial stenoses. Journal Indian Academy of Clinical Medicine, 11(4), 294-299.
  • Michie, D., & Fried, W. (1973). An in vitro test medium for evaluating clinical Doppler ultrasonic flow systems. Journal of clinical ultrasound: JCU, 1(2), 130.
  • Oglat, A. A., Matjafri, M., Suardi, N., Abdelrahman, M. A., Oqlat, M. A., & Oqlat, A. A. (2018). Anew scatter particle and mixture fluid for preparing blood mimicking fluid for wall‑less flow phantom. J Med Ultrasound.
  • Oglat, A. A., Matjafri, M., Suardi, N., Oqlat, M. A., Abdelrahman, M. A., & Oqlat, A. A. (2018). A review of medical doppler ultrasonography of blood flow in general and especially in common carotid artery. Journal of Medical Ultrasound, 26(1), 3.
  • Oglat, A. A., Matjafri, M., Suardi, N., Oqlat, M. A., Oqlat, A. A., & Abdelrahman, M. A. A New Blood Mimicking Fluid Using Propylene Glycol and Their Properties for a Flow Phantom Test of Medical Doppler Ultrasound. International Journal of Chemistry, Pharmacy &Technology, Vol. 2(No.5), pp-220-231, 2017.
  • Oglat AA, M. M., Suardi N, Abdelrahman MA, Oqlat MA, Oqlat A.A. (2018). A new scatter particle and mixture fl uid for preparing blood mimicking fluid for wall-less fl ow phantom. J Med Ultrasound;, {In press}.
  • Oglat AA, M. M., Suardi N, Oqlat MA, Abdelrahman MA, Oqlat AA, et al. . (2018). Chemical items used for preparing tissue-mimicking material of wall-less flow phantom for doppler ultrasound imaging. J Med Ultrasound 2018 ;, {In press}.
  • Oglat AA, S. N., Matjafri Mz, Oqlat MA, Abdelrahman MA, Oqlat AA. . (2018). A review of suspension‑scattered particles used in blood‑mimicking fluid for Doppler ultrasound imaging. J Med Ultrasound;, {In press}.
  • Ophir, J., Alam, S. K., Garra, B. S., Kallel, F., Konofagou, E. E., Krouskop, T.,. Merritt, C. R. B., Righetti, R., Souchon, R., Srinivasan, S., Varghese, T. . (2002). Elastography: imaging the elastic properties of soft tissues with ultrasound. Journal of Medical Ultrasonics, 29((4)), 155.
  • Ramnarine, K. V., Anderson, T., & Hoskins, P. R. (2001). Construction and geometric stability of physiological flow rate wall-less stenosis phantoms. Ultrasound in Medicine and Biology, 27(2), 245-250.
  • Sun, C., Pye, S. D., Browne, J. E., Janeczko, A., Ellis, B., Butler, M. B., Sboros, V., Thomson, A., Brewin, M., Earnshaw, C. H, Moran, M. C. (2012). The speed of sound and attenuation of an IEC agar-based tissue-mimicking material for high frequency ultrasound applications. Ultrasound in Medicine and Biology, 38(7), 1262-1270.
  • Zhou, X., Kenwright, D. A., Wang, S., Hossack, J. A., & Hoskins, P. R. (2017). Fabrication of Two Flow Phantoms for Doppler Ultrasound Imaging. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 64(1), 53-65.
  • Zhou, X., Xia, C., Khan, F., Corner, G. A., Huang, Z., & Hoskins, P. R. (2016). Investigation of ultrasound-measured flow rate and wall shear rate in wrist arteries using flow phantoms. Ultrasound in medicine & biology, 42(3), 815-823.
Primary Language en
Subjects Physics, Applied
Journal Section 3
Authors

Author: A. Oglat Ammar (Primary Author)

Author: MZ Matjafri

Author: Nursakinah Suardi

Author: Mohammad A. Oqlat

Author: Ahmad A. Oqlat

Author: Mostafa A Abdelrahman

Author: O.F. Farhat

Author: Muntaser S. Ahmad

Author: Batool N. Alkhateb

Author: Sylvester J. Gemanam

Author: Sabri M. Shalbi

Author: Raed Abdalrheem

Author: Marwan Shipli

Author: Mohammad Marashdeh

Dates

Publication Date: October 10, 2018

Bibtex @research article { nesciences468972, journal = {Natural and Engineering Sciences}, issn = {2458-8989}, eissn = {2458-8989}, address = {Cemal TURAN}, year = {2018}, volume = {3}, pages = {359 - 377}, doi = {10.28978/nesciences.468972}, title = {Characterization and Construction of a Robust and Elastic Wall-Less Flow Phantom for High Pressure Flow Rate Using Doppler Ultrasound Applications}, key = {cite}, author = {Ammar, A. Oglat and Matjafri, MZ and Suardi, Nursakinah and Oqlat, Mohammad A. and Oqlat, Ahmad A. and Abdelrahman, Mostafa A and Farhat, O.F. and Ahmad, Muntaser S. and Alkhateb, Batool N. and Gemanam, Sylvester J. and Shalbi, Sabri M. and Abdalrheem, Raed and Shipli, Marwan and Marashdeh, Mohammad} }
APA Ammar, A , Matjafri, M , Suardi, N , Oqlat, M , Oqlat, A , Abdelrahman, M , Farhat, O , Ahmad, M , Alkhateb, B , Gemanam, S , Shalbi, S , Abdalrheem, R , Shipli, M , Marashdeh, M . (2018). Characterization and Construction of a Robust and Elastic Wall-Less Flow Phantom for High Pressure Flow Rate Using Doppler Ultrasound Applications. Natural and Engineering Sciences, 3 (3), 359-377. DOI: 10.28978/nesciences.468972
MLA Ammar, A , Matjafri, M , Suardi, N , Oqlat, M , Oqlat, A , Abdelrahman, M , Farhat, O , Ahmad, M , Alkhateb, B , Gemanam, S , Shalbi, S , Abdalrheem, R , Shipli, M , Marashdeh, M . "Characterization and Construction of a Robust and Elastic Wall-Less Flow Phantom for High Pressure Flow Rate Using Doppler Ultrasound Applications". Natural and Engineering Sciences 3 (2018): 359-377 <http://dergipark.org.tr/nesciences/issue/39636/468972>
Chicago Ammar, A , Matjafri, M , Suardi, N , Oqlat, M , Oqlat, A , Abdelrahman, M , Farhat, O , Ahmad, M , Alkhateb, B , Gemanam, S , Shalbi, S , Abdalrheem, R , Shipli, M , Marashdeh, M . "Characterization and Construction of a Robust and Elastic Wall-Less Flow Phantom for High Pressure Flow Rate Using Doppler Ultrasound Applications". Natural and Engineering Sciences 3 (2018): 359-377
RIS TY - JOUR T1 - Characterization and Construction of a Robust and Elastic Wall-Less Flow Phantom for High Pressure Flow Rate Using Doppler Ultrasound Applications AU - A. Oglat Ammar , MZ Matjafri , Nursakinah Suardi , Mohammad A. Oqlat , Ahmad A. Oqlat , Mostafa A Abdelrahman , O.F. Farhat , Muntaser S. Ahmad , Batool N. Alkhateb , Sylvester J. Gemanam , Sabri M. Shalbi , Raed Abdalrheem , Marwan Shipli , Mohammad Marashdeh Y1 - 2018 PY - 2018 N1 - doi: 10.28978/nesciences.468972 DO - 10.28978/nesciences.468972 T2 - Natural and Engineering Sciences JF - Journal JO - JOR SP - 359 EP - 377 VL - 3 IS - 3 SN - 2458-8989-2458-8989 M3 - doi: 10.28978/nesciences.468972 UR - https://doi.org/10.28978/nesciences.468972 Y2 - 2018 ER -
EndNote %0 Natural and Engineering Sciences Characterization and Construction of a Robust and Elastic Wall-Less Flow Phantom for High Pressure Flow Rate Using Doppler Ultrasound Applications %A A. Oglat Ammar , MZ Matjafri , Nursakinah Suardi , Mohammad A. Oqlat , Ahmad A. Oqlat , Mostafa A Abdelrahman , O.F. Farhat , Muntaser S. Ahmad , Batool N. Alkhateb , Sylvester J. Gemanam , Sabri M. Shalbi , Raed Abdalrheem , Marwan Shipli , Mohammad Marashdeh %T Characterization and Construction of a Robust and Elastic Wall-Less Flow Phantom for High Pressure Flow Rate Using Doppler Ultrasound Applications %D 2018 %J Natural and Engineering Sciences %P 2458-8989-2458-8989 %V 3 %N 3 %R doi: 10.28978/nesciences.468972 %U 10.28978/nesciences.468972
ISNAD Ammar, A. Oglat , Matjafri, MZ , Suardi, Nursakinah , Oqlat, Mohammad A. , Oqlat, Ahmad A. , Abdelrahman, Mostafa A , Farhat, O.F. , Ahmad, Muntaser S. , Alkhateb, Batool N. , Gemanam, Sylvester J. , Shalbi, Sabri M. , Abdalrheem, Raed , Shipli, Marwan , Marashdeh, Mohammad . "Characterization and Construction of a Robust and Elastic Wall-Less Flow Phantom for High Pressure Flow Rate Using Doppler Ultrasound Applications". Natural and Engineering Sciences 3 / 3 (October 2018): 359-377. https://doi.org/10.28978/nesciences.468972
AMA Ammar A , Matjafri M , Suardi N , Oqlat M , Oqlat A , Abdelrahman M , Farhat O , Ahmad M , Alkhateb B , Gemanam S , Shalbi S , Abdalrheem R , Shipli M , Marashdeh M . Characterization and Construction of a Robust and Elastic Wall-Less Flow Phantom for High Pressure Flow Rate Using Doppler Ultrasound Applications. NESciences. 2018; 3(3): 359-377.
Vancouver Ammar A , Matjafri M , Suardi N , Oqlat M , Oqlat A , Abdelrahman M , Farhat O , Ahmad M , Alkhateb B , Gemanam S , Shalbi S , Abdalrheem R , Shipli M , Marashdeh M . Characterization and Construction of a Robust and Elastic Wall-Less Flow Phantom for High Pressure Flow Rate Using Doppler Ultrasound Applications. Natural and Engineering Sciences. 2018; 3(3): 377-359.