Year 2018, Volume 27, Issue 5, Pages 384 - 404 2018-09-28

Mineral records of the pyroxenites formed within harzburgites (Ulaş, Sivas, Turkey): implications on petrogenesis and tectonic setting

Özgür BİLİCİ [1] , Hasan KOLAYLI [2]

13 63

  In this article, the petrological processes of the clinopyroxenite dykes and host peridotites occurring in Ulaş District (Sivas, mid-Anatolia, Turkey) are discussed. The new geochemical data from major minerals in the clinopyroxenite dykes and host harzburgites revealed differences to the supra-subduction zone (SSZ)-type pyroxenites and peridotites. In particular, the NiO content of olivines in the host harzburgites showed the signature of the mantle, whereas rare olivines of the clinopyroxenites had a NiO content and Fo number that were inferior to those of mantle peridotites. The high Mg-number of clinopyroxenes in the clinopyroxenites was likely associated with the partial remelting of the host harzburgites. Additionally, the rare earth element pattern of clinopyroxenes from the studied clinopyroxenites exhibited a similar pattern to those of the other SSZ or fore-arc clinopyroxenes. Additionally, the low Mgnumber and relatively high Cr-number of spinels in the clinopyroxenites showed similarity to the subduction-related origin. Based on textural and geochemical evidence, the harzburgites were interpreted as depleted mantle rock, which was modified by melt-peridotite interactions. Consequently, the pyroxenites likely occurred as a crystallizing or cumulative zone of the SSZ-type melt and the minerals were gained from partial melting of the harzburgites through the interaction with such magma.

Pyroxenite dyke, peridotite, subduction zone, partial melting, Sivas, Turkey
  • Allegre CJ, Turcotte DL (1986). Implications of a two-component marble-cake mantle. Nature 323: 123-127.
  • Arai S (1992). Chemistry of chromian spinel in volcanic-rocks as a potential guide to magma chemistry. Min Magazine 56: 173- 184.
  • Arai S (1994). Characterization of spinel peridotites by olivine-spinel mantle com-positional relationships: review and interpretation. Chem Geol 113: 191-204.
  • Arai S, Takemoto Y (2007). Mantle wehrlite from Hess Deep as a crystal cumulate from an ultra-depleted primary melt in East Pacific Rise. Geophys Res Lett 34: L08302.
  • Batanova V, Belousov I, Savelieva G, Sobolev A (2011). Consequences of channelized and diffuse melt transport in supra-subduction mantle: evidence from Voykar ophiolite (Polar Urals). J Petrol 52: 2483-2521.
  • Berly TJ, Hermann J, Arculus AJ, Lapierr H (2006). Supra-subduction zone pyroxenites from San Jorge and Santa Isabel (Solomon Islands). J Petrol 47: 1531-1555.
  • Bilici Ö (2015). Comparative investigation of Kop (Erzurum- Erzincan-Bayburt), Ulaş (Sivas) and Yeşilova (Burdur) ultramafics and chromitites in terms of mineralogical, petrological and geodynamical aspects. PhD, Karadeniz Technical University, Trabzon, Turkey (in Turkish with English Abstract).
  • Bizimis M, Salters VJM, Bonatti E (2000). Trace and REE contents of clinopyroxenes from supra-subduction zone peridotites, implication for melting and enrichment processes in island arcs. Chem Geol 165: 67-85.
  • Bodinier JL, Godard M (2003). Orogenic, ophiolitic, and abyssal peridotites. In: Holland HD, Turekian KK, editors. Treatise on Geochemistry. Oxford, UK: Elsevier, pp. 103-170.
  • Bodinier JL, Menzies MA, Shimizu N, Frey A, McPherson E (2004). Silicate, hydrous and carbonate metasomatism at Lherz, France: contemporaneous derivatives of silicate melt- harzburgite reaction. J Petrol 4: 299-320.
  • Bonatti E, Michael PJ (1989). Mantle peridotites from continental rifts to ocean basins to subduction zones. Earth Planet Sci Lett 91: 297-311.
  • Brooker RA, James RH, Blundy JD (2004). Trace element and Li isotope systematics in Zabargad peridotites: evidence of an ancient subduction process in the Red Sea mantle. Chem Geol 212: 179-204.
  • Buchl A, Brugmann G, Batanova VG, Munker C, Hofmann AW (2002). Melt percolation monitored by Os isotopes and HSE abundances: a case study from the mantle section of the Troodos Ophiolite. Earth Planet Sci Lett 204: 385-402.
  • Cannat M, Bideau D, Hébert R (1990). Plastic deformation and magmatic impregnation in serpentinized ultramafic rocks from the Garrett transform fault (East Pacific Rise). Earth Planet Sci Lett 101: 216-232.
  • Cater JML, Hanna SS, Ries AC, Turner P (1991). Tertiary evolution of the Sivas Basin, Central Turkey. Tectonophysics 195: 29-46.
  • Choi SH, Shervais JW, Mukasa SB (2008). Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California. Cont Min Petrol 156: 551-576.
  • Constantin M, Hekinian R, Ackerman D, Staffers P (1995). Mafic and ultramafic intrusions into upper mantle peridotites from fast spreading centers of the Easter Microplate (South East Pacific). In: Vissers R, Nicolas A, editors. Mantle and Lower Crust Exposed in Oceanic Ridges and in Ophiolites. Petrology and Structural Geology. Dordrecht, Netherlands: Kluwer, pp. 71-120.
  • Dantas C, Ceuleneer G, Gregoire M, Python M, Freydier R, Warren J, Dick HJB (2007). Pyroxenites from the Southwest Indian Ridge, 9-168E: Cumulates from incremental melt fractions produced at the top of a cold melting regime. J Petrol 48: 647- 660.
  • Dare SAS, Pearce JA, McDonald I, Styles MT (2009). Tectonic discrimination of peridotites using fO2–Cr# and Ga–Ti–FeIII systematics in chrome–spinel. Chem Geol 261: 199-216.
  • DeBari SM, Coleman RJ (1989). Examination of the deep levels of an island arc: evidence from the Tonsina ultramafic–mafic assemblage. J Geophys Res 94: 4373-4391.
  • DeBari SM, Kay SM, Kay RW (1987). Ultramafic xenoliths from Adagdak volcano, Adak, Aleutian Islands, Alaska: deformed igneous cumulates from the Moho of an island arc. J Geol 95: 329-341.
  • Dick HJB (1989). Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. J Geol Soc London Spec Public 42: 71-105.
  • Dick HJB, Bullen T (1984). Chromian spinel as a petrogenetic indicator in abyssal and Alpine-type peridotites and spatially associated lavas. Cont Min Petrol 86: 54-76.
  • Dick HJB, Sinton JM (1979). Compositional layering in Alpine peridotites: evidence for pressure solution creep in the mantle. J Geol 87: 403-416.
  • Downes H (2007). Origin and significance of spinel and garnet pyroxenites in the shallow lithospheric mantle: ultramafic massifs in orogenic belts in Western Europe and NW Africa. Lithos 99: 1-24.
  • Edwards SJ, Malpas J (1995). Multiple origins for mantle harzburgites: examples from the Lewis Hills, Bay of Islands ophiolite, Newfoundland. Canad J Earth Sci 32: 1046-1057.
  • France L, Chazot G, Kornprobst J, Dallai L, Vannucci R, Grégoire M, Bertrand H, Boivin P (2015). Mantle refertilization and magmatism in old orogenic regions: the role of late-orogenic pyroxenites. Lithos, 232: 49-75.
  • Fujii T (1990). Petrology of peridotites from hole 670A, Leg 109. In: Detrick R, Honnorez J, Brian WB, Juteau T, Becker K, Adamson AC, editors. Proceedings of Ocean Drilling Program Scientific Results. College Station, TX, USA: Ocean Drilling Program, pp. 19-25.
  • Gaetani GA, Grove TL (1998). The influence of water on melting of mantle peridotite. Cont Min Petrol 131: 323-346.
  • Garrido CJ, Bodinier JL (1999). Diversity of mafic rocks in the Ronda peridotite: evidence for pervasive melt–rock reaction during heating of subcontinental lithosphere by upwelling asthenosphere. J Petrol 40: 729-754.
  • Girardeau J, Ibarguchi JIG (1991). Pyroxenite-rich peridotites of the Cabo Ortegal Complex (northwestern Spain): evidence for large-scale upper-mantle heterogeneity. J Petrol 2: 135- 153.
  • Gonzaga RG, Menzies MA, Thirlwall MF, Jacob DE, Leroex A (2010). Eclogites and garnet pyroxenites: problems resolving provenance using Lu–Hf, Sm–Nd and Rb–Sr isotope systems. J Petrol 51: 513-535.
  • Gonzalez-Jimenez JM, Proenza JA, Gervilla F, Melgarejo JC, Blanco- Moreno JA, Ruız-Sanchez R, Griffin WL (2011). High-Cr and high-Al chromitites from the Sagua de Tanamo district, Mayari-Cristal ophiolitic massif (eastern Cuba): constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum group elements. Lithos 125: 101-121.
  • Hellebrand E, Snow JE, Mostefaoui S, Hoppe P (2005). Trace element distribution between orthopyroxene and clinopyroxene in peridotites from the Gakkel Ridge: a SIMS and Nano SIMS study. Cont Min Petrol 150: 486-504.
  • Irving AJ (1974). Geochemical and high pressure experimental studies of garnet pyroxenite and pyroxene granulites xenoliths from the Delegate Basaltic Pipes, Australia. J Petrol 15: 1-40.
  • Ishii T, Robinson PT, Maekawa H, Fiske R (1992). Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc, Leg 125. In: Fryer P, Pearce JA, Coleman P, Stokking LB, editors. Proceedings of the Ocean Drilling Program Scientific Results. College Station, TX, USA: Ocean Drilling Program, pp. 445-486.
  • Johnson KT, Dick HJ, Shimizu N (1990). Melting in the oceanic upper mantle: an ion-microprobe study of diopsides in abyssal peridotite. J Geophys Res 95: 2661-2678.
  • Juteau T, Berger E, Cannat M (1990). Serpentinized, residual mantle peridotites from the M.A.R. Median Valley, hole 670A, Leg 109: primary mineralogy and geothermometry. In: Detrick R, Honnorez J, Brian WB, Juteau T, Becker K, Adamson AC, editors. Proceedings of Ocean Drilling Program Scientific Results. College Station, TX, USA: Ocean Drilling Program, pp. 27-45.
  • Kaczmarek MA, Jonda L, Davies HL (2015). Evidence of melting, melt percolation and deformation in a supra-subduction zone (Marum ophiolite complex, Papua New Guinea). Cont Min Petrol 170: 19.
  • Kelemen PB (1990). Reaction between ultramafic rock and fractionating basaltic magma I. Phase relations, the origin of calcalkaline magma series, and the formation of discordant dunite. J Petrol 31: 51-98.
  • Kelemen PB, Shimizu N, Salters VJM (1995). Extraction of mid- ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375: 747-753.
  • Kempton PD, Stephens CJ (1997). Petrology and geochemistry of nodular websterite inclusions in harzburgite, hole 920D, Leg 153. In: Karson JA, Cannat M, Miller DJ, Elthon D, editors. Proceedings of Ocean Drilling Program Scientific Results. College Station, TX, USA: Ocean Drilling Program, pp. 321- 331.
  • Ketin İ (1983). A General Overview on Geology of Turkey. İstanbul, Turkey: ITU Library Publication (in Turkish).
  • Kornprobst J (1969). High temperature, high pressure alpine- type peridotite and associated pyroxenites (with or without garnet) from Beni Bouchera (Morocco). Cont Min Petrol 23: 283-322 (article in French with an abstract in English).
  • Laukert G, von der Handt A, Hellebrand E, Snow JE, Hoppe P, Klugel A (2014). High pressure reactive melt stagnation recorded in abyssal pyroxenites from the ultraslow-spreading Lena Trough, Arctic Ocean. J Petrol 55: 427-458.
  • Lee Y (1999). Geotectonic significance of detrital chromian spinel: a review. Geosci J 3: 23-29.
  • Loubet M, Allegre CJ (1982). Trace elements in orogenic lherzolites reveal the complex history of the upper mantle. Nature 298: 809-814.
  • Marchesi C, Garrido CJ, Bosch, D, Bodinier JL, Gervilla F, Hidas K (2013). Mantle refertilization by melts of crustal-derived garnet pyroxenite: evidence from the Ronda peridotite massif, southern Spain. Earth Planet Sci Lett 362: 66-75. Melcher F, Grum W, Simon G, Thalhammer TV, Stumpfl EF (1 997). Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a study of solid and fluid inclusions in chromite. J Petrol 38: 1419-1458.
  • Menzies M, Allen C (1974). Plagioclase lherzolite-residual mantle relationships within two eastern Mediterranean ophiolites. Cont Min Petrol 45: 197-213.
  • Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi D (1988). Nomenclature of pyroxenes. Am Mineral 62: 53-62.
  • MTA (2002). 1:500,000 Scale Geology Map of Turkey. General Directorate of Mineral Research and Exploration, Ankara, Turkey.
  • Nozaka T (2005). Metamorphic history of serpentinite mylonites from the Happoultramafic complex, central Japan. J Metamorphic Geol 23: 711-723.
  • Okay IA, Tüysüz O (1999). Tethyan sutures of northern Turkey. J Geol Soc London Spec Public 156: 475-515.
  • Page P, Barnes SJ (2009). Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines Ophiolite, Québec, Canada. Eco Geol 104: 997-1018.
  • Page P, Bedard JH, Schroetter JM, Tremblay A (2008). Mantle petrology and mineralogy of the Thetford Mines Ophiolite Complex. Lithos 100: 255-292.
  • Parkinson IJ, Pearce JA (1998). Peridotites from the Izu-Bonin- Mariana forearc (ODP Leg 125): evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. J Petrol 39: 1577-1618.
  • Parkinson IJ, Pearce JA, Thirlwall MF, Johnson KTM, Ingram G (1992). Trace element geochemistry of peridotites from the Izu–Bonin–Mariana forearc, Leg 125. In: Fryer P, Pearce JA, Coleman P, Stokking LB, editors. Proceedings of the Ocean Drilling Program Scientific Results. College Station, TX, USA: Ocean Drilling Program, pp. 487-506.
  • Parlak O (2016). The Tauride ophiolites of Anatolia (Turkey): a review. J Earth Sci 27: 901-934.
  • Parlak O, Yılmaz H, Boztuğ D (2006). Origin and tectonic significance of the metamorphic sole and isolated dykes of the Divriği Ophiolite (Sivas, Turkey): evidence for slab break- off prior to ophiolite emplacement. Turkish J Earth Sci 15: 25-45.
  • Pearce JA, Barker PF, Edwards SJ, Parkinson IJ, Leat PT (2000). Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Cont Min Petrol 139: 36-53.
  • Pearson DG, Davies GR, Nixon PH (1993). Geochemical constraints on the petrogenesis of diamond facies pyroxenites from the Beni Bousera peridotite massif. J Petrol 34: 125-172.
  • Pearson DG, Nowell GM (2004). Re-Os and Lu-Hf isotope constraints on the origin and age of pyroxenites from the Beni Bousera peridotite massif; implications for mixed peridotite-pyroxenite mantle sources. J Petrol 45: 439-455.
  • Poisson A, Guezou JC, Öztürk A, İnan S, Temiz H, Gürsöy H, Kavak KS, Özden S (1996). Tectonic setting and evolution of the Sivas Basin, Central Anatolia, Turkey. Int Geol Rev 38: 838-853.
  • Robertson AHF, Parlak O, Metin Y, Vergili Ö, Tasli K, İnan N, Soycan H (2013). Late Palaeozoic–Cenozoic Tectonic Development of Carbonate Platform, Margin and Oceanic Units in the Eastern Taurides, Turkey. In: Robertson AHF, Parlak O, Unlugenc UC, editors. Geological Development of Anatolia and the Easternmost Mediterranean Region. London, UK: The Geological Society, pp. 167-218.
  • Rollinson P (2008). The geochemistry of mantle chromitites from the northern part of the Oman ophiolite: inferred parental melt compositions. Cont Min Petrol 156: 273-288.
  • Santos JF, Scharer U, Ibarguchi JIG, Girardeau J (2002). Genesis of pyroxenite-rich peridotite at Cabo Ortegal (NW Spain): geochemical and Pb–Sr–Nd isotope data. J Petrol 43: 17-43.
  • Seyler M, Bonatti E (1997). Regional-scale melt-rock interaction in lherzolitic mantle in the Romanche Fracture Zone (Atlantic Ocean). Earth Plan Sci Lett 146: 273-287.
  • Seyler M, Brunelli D, Toplis MJ, Mevel C (2011). Multiscale chemical heterogeneities beneath the eastern Southwest Indian Ridge (52°E–68°1422 E): Trace element compositions of alon gaxis dredged peridotites. Geochem Geophys Geosys 12: Q0AC15.
  • Seyler M, Cannat M, Mevel C (2003). Evidence for major element heterogeneityin the mantle source of abyssal peridotites from the Southwest Indian Ridge (52 to 68°E). Geochem, Geophys Geosys 4: 1-33.
  • Seyler M, Lorand JP, Dick HJB, Drouin M (2007). Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid Atlantic Ridge,15°20N: ODP Hole 1274A. Cont Min Petrol 153: 303-319.
  • Snoke AW, Quick JE, Bowman HR (1981). Bear Mountain igneous complex, Klamath Mountains, California: an ultrabasic to silicic calc-alkaline suite. J Petrol 22: 501-552.
  • Spandler CJ, Arculus RJ, Eggins SM, Mavrogenes JA, Price RC, Reay A (2003). Petrogenesis of the Greenhills Complex, Southland, New Zealand: magmatic differentiation and cumulate formation at the roots of a Permian island-arc volcano. Cont Min Petrol 14: 703- 721.
  • Sun SS, McDonough WF (1989). Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ, editors. Magmatism in the Ocean Basins. London, UK: The Geological Society, pp. 313-345.
  • Takahashi E, Uto K, Schilling JG (1987). Primary magma compositions and Mg/Fe ratios mantle resudies Along Mid Atlantic Ridge 29°N to 73°N. Technical reports of ISEI, Okayama University, Ser A 9: 1-14.
  • Tamura A, Arai S (2006). Harzburgite–dunite–orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle. Lithos 90: 43-56.
  • Uysal I, Ersoy EY, Karslı O, Dilek Y, Sadıklar MB, Ottely CJ, Tiepolo M, Meisel T (2012). Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a Neo-Tethyan ophiolite in SW Turkey: constraints from mineral composition, whole-rock geochemistry (major–trace–REE–PGE), and Re–Os isotope systematics. Lithos 132-133: 50-69.
  • Uysal I, Tarkian M, Sadıklar MB, Şen C (2007). Platinum-Group- Element geochemistry and mineralogy of ophiolitic chromitites from the Kop Mountains, northeastern Turkey. Canad Mineral 45: 355-377.
  • Van Acken D (2008). Melt-rock interaction and refertilization of oceanic lithosphere - a highly siderophile element and Os isotope study, Totalp Massif, Switzerland. PhD, Freie Universty, Berlin, Germany.
  • Van Acken D, Becker H, Walker RJ, McDonough WF, Wombacher F, Ash RD, Piccoli PM (2010). Formation of pyroxenites layers in the Totalp ultramafic massif (Swiss Alps) – Insights from highly siderophile elements and Os isotopes. Geo Cosmo Acta 74: 661-683.
  • Varfalvy V, Hebert R, Bedard JH (1996). Interactions between melt and upper-mantle peridotites in the North Arm Mountain massif, Bay of Islands ophiolite, Newfoundland, Canada: implications for the genesis of boninitic and related magmas. Chem Geol 129: 71-90.
  • Varfalvy V, Hebert R, Bedard JH, Lafleche M (1997). Petrology and geochemistry of pyroxenite dykes in upper mantle peridotites of the North Arm Mountain massif, Bay of Islands ophiolite, Newfoundland: implications for the genesis of boninitic and related magmas. Canad Mineral 35: 543-570.
  • Vergili Ö, Parlak O (2005). Geochemistry and tectonic setting of metamorphic sole rocks and mafic dykes from the Pınarbaşı (Kayseri) Ophiolite, Central Anatolia. Ofioliti 30: 37-52.
  • Wang Z, Sun S, Hou Q, Li J (2001). Effect of melt–rock interaction on geochemistry in the Kudi ophiolite (western Kunlun Mountains, northwestern China): implication for ophiolite origin. Earth Planet Sci Let 191: 33-48.
  • Warren JM, Shimizu N, Sakaguchi C, Dick HJB, Nakamura E (2009). An assessment of upper mantle heterogeneity based on abyssal peridotite isotopic compositions. J Geophys Res 114: B12203.
  • Whattam SA, Moonsup Cho M, Smith IEM (2011). Magmatic peridotites and pyroxenites, Andong Ultramafic Complex, Korea: geochemical evidence for supra-subduction zone formation and extensive melt–rock interaction. Lithos 127: 599-618.
  • Wojtulek P, Puziewicz J, Ntaflos T (2016). Melt impregnation phases in the mantle section of the Sleza ophiolite (SW Poland). Chemie der Erde 76: 299-308.
  • Yaxley GM, Green DH (1998). Reactions between eclogite and peridotite: mantle refertilization by subduction of oceanic crust. Schweiz Min Petr Mitt 78: 243-255.
  • Yilmaz A, Sümengen M, Terlemez I, Bilgiç T (1989). 1:100000 Scale Geology Map of Turkey, Sivas G23. General Directorate of Mineral Research and Exploration, Ankara, Turkey.
  • Yılmaz A, Yılmaz H (2006). Characteristic features and structural evolution of a post collisional basin: the Sivas Basin, Central Anatolia, Turkey. J Asian Earth Sci 27: 164-176.
  • Yılmaz H, Arıkal T, Yılmaz A (2001). Geology of the Güneş ophiolite (Divriği-Sivas). Proceedings of the 54th Geological Congress of Turkey, Ankara, Turkey, pp. 54-65 (in Turkish with an abstract in English).
  • Yılmaz H, Yılmaz A (2004). Geology and Structural Evolution of the Divriği (Sivas) Region. Geological Bulletin of Turkey 47: 13-45.
  • Xiong Q, Zheng JP, Griffin WL, O’Reilly SY, Pearson NJ (2014). Pyroxenite dykes in orogenic peridotite from North Qaidam (NE Tibet, China) track metasomatism and segregation in the mantle wedge. J Petrol 55: 2347-2376.
  • Zaccarini F, Garuti G, Proenza JA, Campos L, Thalhammer OAR, Aiglsperger T, Lewis J (2011). Chromite and platinum- group-elements mineralization in the Santa Elena ophiolitic ultramafic nappe (Costa Rica): geodynamic implications. Geol Acta 9: 407-423.
  • Zhou MF, Robinson PT, Malpas I, Li Z (1996). Podiform chromitites in Luobusa ophiolite (Southern Tibet): implications for melt- rock interaction and chromite segregation in the upper mantle. J Petrol 37: 3-21.
Primary Language en
Subjects Engineering
Journal Section Articles
Authors

Orcid: 0000-0002-8810-9662
Author: Özgür BİLİCİ

Orcid: 0000-0003-3629-7371
Author: Hasan KOLAYLI

Bibtex @research article { tbtkearth473919, journal = {Turkish Journal of Earth Sciences}, issn = {1300-0985}, eissn = {1303-619X}, address = {TUBITAK}, year = {2018}, volume = {27}, pages = {384 - 404}, doi = {}, title = {Mineral records of the pyroxenites formed within harzburgites (Ulaş, Sivas, Turkey): implications on petrogenesis and tectonic setting}, key = {cite}, author = {BİLİCİ, Özgür and KOLAYLI, Hasan} }
APA BİLİCİ, Ö , KOLAYLI, H . (2018). Mineral records of the pyroxenites formed within harzburgites (Ulaş, Sivas, Turkey): implications on petrogenesis and tectonic setting. Turkish Journal of Earth Sciences, 27 (5), 384-404. Retrieved from http://dergipark.org.tr/tbtkearth/issue/39912/473919
MLA BİLİCİ, Ö , KOLAYLI, H . "Mineral records of the pyroxenites formed within harzburgites (Ulaş, Sivas, Turkey): implications on petrogenesis and tectonic setting". Turkish Journal of Earth Sciences 27 (2018): 384-404 <http://dergipark.org.tr/tbtkearth/issue/39912/473919>
Chicago BİLİCİ, Ö , KOLAYLI, H . "Mineral records of the pyroxenites formed within harzburgites (Ulaş, Sivas, Turkey): implications on petrogenesis and tectonic setting". Turkish Journal of Earth Sciences 27 (2018): 384-404
RIS TY - JOUR T1 - Mineral records of the pyroxenites formed within harzburgites (Ulaş, Sivas, Turkey): implications on petrogenesis and tectonic setting AU - Özgür BİLİCİ , Hasan KOLAYLI Y1 - 2018 PY - 2018 N1 - DO - T2 - Turkish Journal of Earth Sciences JF - Journal JO - JOR SP - 384 EP - 404 VL - 27 IS - 5 SN - 1300-0985-1303-619X M3 - UR - Y2 - 2018 ER -
EndNote %0 Turkish Journal of Earth Sciences Mineral records of the pyroxenites formed within harzburgites (Ulaş, Sivas, Turkey): implications on petrogenesis and tectonic setting %A Özgür BİLİCİ , Hasan KOLAYLI %T Mineral records of the pyroxenites formed within harzburgites (Ulaş, Sivas, Turkey): implications on petrogenesis and tectonic setting %D 2018 %J Turkish Journal of Earth Sciences %P 1300-0985-1303-619X %V 27 %N 5 %R %U
ISNAD BİLİCİ, Özgür , KOLAYLI, Hasan . "Mineral records of the pyroxenites formed within harzburgites (Ulaş, Sivas, Turkey): implications on petrogenesis and tectonic setting". Turkish Journal of Earth Sciences 27 / 5 (September 2018): 384-404.