BibTex RIS Kaynak Göster

A STOCHASTIC-OPTIMIZATION MODEL FOR DETERMINING THE OPTIMAL MICRO-SITING OF WIND TURBINES

Yıl 2016, Cilt: 6 Sayı: 2, 6 - 14, 23.07.2016

Öz

We propose a general model for the placement of wind turbines in a rectangular grid formation over a flat area. For better realism, we consider stochastic wind speeds and directions, in conjunction with the wake effects that upstream turbines impose on downstream ones. The objective is to pack as many turbines as economically optimal in a given area, i.e. to maximize the expected MW output per dollar of capital investment and O&M costs per meter square. Due to the complex structure of the mathematical model, we apply a hybrid approach of MonteCarlo sampling of wind speeds and directions together with the Nelder-Mead heuristic method to search for the optimal horizontal and vertical spacing of the turbines. Results of a case study based on a real dataset of wind speeds and directions, a selected commercial turbine’s approximated power curve, and industry estimates of costs is discussed

Kaynakça

  • Attias, K. (2011). Optimal Layout for Wind Turbine Farms, Ben-Gurion University.
  • Donovan, S. (2005). 40th Annual Conference: Wind Farm Optimization, Operational Research Society of New Zealand, Wellington, New Zealand.
  • Katic, I., Hojstrup, J., & Jensen N. O. (1986). European wind energy conference and exhibition: A simple model for cluster efficiency. Rome, p. 407-10.
  • Kulunk E. (2011). Fundamental and Advanced Topics in Wind Power: Aerodynamics of Wind Turbines, ISBN: 978-953-307-508-2.
  • Kusiak A., (2010). Design of wind farm layout for maximum wind energy capture, The University of Iowa.
  • Liu, F. and Wang, Z. (2014). Offshore Wind Farm Layout Optimization Using Adapted Genetic Algorithm: A Different Perspective, Virginia Commonwealth university.
  • Renkema, D. J. (2007). Validation of wind turbine wake models using wind farm data and wind tunnel measurements, Delft University of Technology.
  • Samorani, M. (2013) The Wind Farm Layout Optimization Problem, University of Alberta.
  • Schlez, W. New Developments in Precision Wind Farm Modelling, Garrad Hassan and Partners Ltd.
  • Tao, H. (2011). The Assessment of Dynamic Wake Effects on Loading, Delft University of Technology,
  • The Sailhawt Website, https://sites.google.com/site/sailhawt
  • The Windpower Program Website, http://www.wind-power-program.com/turbine_characteristics.htm
  • Zhang, X. & Wang, W. (2009). Wind Farm and Wake Effect Modeling for Simulation of a Studied Power System, Xi’an Jiaotong University
Yıl 2016, Cilt: 6 Sayı: 2, 6 - 14, 23.07.2016

Öz

Kaynakça

  • Attias, K. (2011). Optimal Layout for Wind Turbine Farms, Ben-Gurion University.
  • Donovan, S. (2005). 40th Annual Conference: Wind Farm Optimization, Operational Research Society of New Zealand, Wellington, New Zealand.
  • Katic, I., Hojstrup, J., & Jensen N. O. (1986). European wind energy conference and exhibition: A simple model for cluster efficiency. Rome, p. 407-10.
  • Kulunk E. (2011). Fundamental and Advanced Topics in Wind Power: Aerodynamics of Wind Turbines, ISBN: 978-953-307-508-2.
  • Kusiak A., (2010). Design of wind farm layout for maximum wind energy capture, The University of Iowa.
  • Liu, F. and Wang, Z. (2014). Offshore Wind Farm Layout Optimization Using Adapted Genetic Algorithm: A Different Perspective, Virginia Commonwealth university.
  • Renkema, D. J. (2007). Validation of wind turbine wake models using wind farm data and wind tunnel measurements, Delft University of Technology.
  • Samorani, M. (2013) The Wind Farm Layout Optimization Problem, University of Alberta.
  • Schlez, W. New Developments in Precision Wind Farm Modelling, Garrad Hassan and Partners Ltd.
  • Tao, H. (2011). The Assessment of Dynamic Wake Effects on Loading, Delft University of Technology,
  • The Sailhawt Website, https://sites.google.com/site/sailhawt
  • The Windpower Program Website, http://www.wind-power-program.com/turbine_characteristics.htm
  • Zhang, X. & Wang, W. (2009). Wind Farm and Wake Effect Modeling for Simulation of a Studied Power System, Xi’an Jiaotong University
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA56BF25ZN
Bölüm Makaleler
Yazarlar

Akiner Tuzuner Bu kişi benim

Issa Almassri Bu kişi benim

Selcuk Goren Bu kişi benim

Yayımlanma Tarihi 23 Temmuz 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 6 Sayı: 2

Kaynak Göster

APA Tuzuner, A., Almassri, I., & Goren, S. (2016). A STOCHASTIC-OPTIMIZATION MODEL FOR DETERMINING THE OPTIMAL MICRO-SITING OF WIND TURBINES. TOJSAT, 6(2), 6-14.
AMA Tuzuner A, Almassri I, Goren S. A STOCHASTIC-OPTIMIZATION MODEL FOR DETERMINING THE OPTIMAL MICRO-SITING OF WIND TURBINES. TOJSAT. Temmuz 2016;6(2):6-14.
Chicago Tuzuner, Akiner, Issa Almassri, ve Selcuk Goren. “A STOCHASTIC-OPTIMIZATION MODEL FOR DETERMINING THE OPTIMAL MICRO-SITING OF WIND TURBINES”. TOJSAT 6, sy. 2 (Temmuz 2016): 6-14.
EndNote Tuzuner A, Almassri I, Goren S (01 Temmuz 2016) A STOCHASTIC-OPTIMIZATION MODEL FOR DETERMINING THE OPTIMAL MICRO-SITING OF WIND TURBINES. TOJSAT 6 2 6–14.
IEEE A. Tuzuner, I. Almassri, ve S. Goren, “A STOCHASTIC-OPTIMIZATION MODEL FOR DETERMINING THE OPTIMAL MICRO-SITING OF WIND TURBINES”, TOJSAT, c. 6, sy. 2, ss. 6–14, 2016.
ISNAD Tuzuner, Akiner vd. “A STOCHASTIC-OPTIMIZATION MODEL FOR DETERMINING THE OPTIMAL MICRO-SITING OF WIND TURBINES”. TOJSAT 6/2 (Temmuz 2016), 6-14.
JAMA Tuzuner A, Almassri I, Goren S. A STOCHASTIC-OPTIMIZATION MODEL FOR DETERMINING THE OPTIMAL MICRO-SITING OF WIND TURBINES. TOJSAT. 2016;6:6–14.
MLA Tuzuner, Akiner vd. “A STOCHASTIC-OPTIMIZATION MODEL FOR DETERMINING THE OPTIMAL MICRO-SITING OF WIND TURBINES”. TOJSAT, c. 6, sy. 2, 2016, ss. 6-14.
Vancouver Tuzuner A, Almassri I, Goren S. A STOCHASTIC-OPTIMIZATION MODEL FOR DETERMINING THE OPTIMAL MICRO-SITING OF WIND TURBINES. TOJSAT. 2016;6(2):6-14.