Yıl 2020,
Cilt: 28 Sayı: 28, 75 - 97, 14.07.2020
Maryam Hamıdızadeh
Ebrahim Hashemı
Armando Reyes
Kaynakça
- A. Alhevaz and A. Moussavi, On skew Armendariz and skew quasi-Armendariz modules, Bull. Iranian Math. Soc., 38(1) (2012), 55-84.
- D. F. Anderson and A. Badawi, Von Neumann regular and related elements in commutative rings, Algebra Colloq., 19(1) (2012), 1017-1040.
- S. Annin, Associated primes over Ore extension rings, J. Algebra Appl., 3(2) (2004), 193-205.
- J. Apel, Grobnerbasen in Nichtkommutativen Algebren und ihre Anwendung, PhD Thesis, Leipzig, Karl-Marx-Univ., 1988.
- V. A. Artamonov, Derivations of skew PBW extensions, Commun. Math. Stat., 3(4) (2015), 449-457.
- V. A. Artamonov, O. Lezama and W. Fajardo, Extended modules and Ore extensions, Commun. Math. Stat., 4(2) (2016), 189-202.
- A. Badawi, On abelian $\pi$-regular rings, Comm. Algebra, 25(4) (1997), 1009-1021.
- V. V. Bavula, Generalized Weyl algebras and their representations, (Russian) Algebra i Analiz, 4(1) (1992), 75-97; translation in St. Petersburg Math. J., 4(1) (1993), 71-92.
- T. Becker and V.Weispfenning, Grobner Bases, A Computational Approach to Commutative Algebra, Graduate Texts in Mathematics, 141, Springer-Verlag, New York, 1993.
- H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc., 2 (1970), 363-368.
- A. D. Bell and K. R. Goodearl, Uniform rank over differential operator rings and Poincare-Birkhoff-Witt extensions, Pacic J. Math., 131(11) (1988), 13-37.
- G. F. Birkenmeier, H. E. Heatherly and E. K. Lee, Completely prime ideals and associated radicals, in Proc. Biennial Ohio State - Denison Conf., Granville, USA, (1992), eds. S. K. Jain and S. T. Rizvi, World Sci. Publ., River Edge, New Jersey, (1993), 102-129.
- K. A. Brown and K. R. Goodearl, Lectures on Algebraic Quantum Groups, Advanced Courses in Mathematics, CRM Barcelona, Birkhauser Verlag, Basel, 2002.
- J. L. Bueso, J. Gomez-Torrecillas and F. J. Lobillo, Homological computations in PBW modules, Algebr. Represent. Theory, 4(3) (2001), 201-218.
- J. L. Bueso, J. Gomez-Torrecillas and A. Verschoren, Algorithmic Methods in Non-commutative Algebra, Applications to Quantum Groups, Mathematical Modelling: Theory and Applications, 17, Kluwer Academic Publishers, Dordrecht, 2003.
- W.-X. Chen and S.-Y. Cui, On weakly semicommutative rings, Commun. Math. Res., 27(2) (2011), 179-192.
- M. Contessa, On certain classes of pm-rings, Comm. Algebra, 12(11-12) (1984), 1447-1469.
- C. Gallego and O. Lezama, Grobner bases for ideals of $\sigma$-PBW extensions, Comm. Algebra, 39(1) (2011), 50-75.
- M. Habibi, A. Moussavi and A. Alhevaz, The McCoy condition on Ore extensions, Comm. Algebra, 41(1) (2013), 124-141.
- E. Hashemi, Compatible ideals and radicals of Ore extensions, New York J. Math., 12 (2006), 349-356.
- E. Hashemi, M. Hamidizadeh and A. Alhevaz, Some types of ring elements in Ore extensions over noncommutative rings, J. Algebra Appl., 16(11) (2017), 1750201 (17 pp).
- E. Hashemi, K. Khalilnezhad and A. Alhevaz, $(\Sigma, \Delta)$-Compatible skew PBW extension ring, Kyungpook Math. J., 57(3) (2017), 401-417.
- E. Hashemi, K. Khalilnezhad and A. Alhevaz, Extensions of rings over 2-primal rings, Matematiche (Catania), 74(1) (2019), 141-162.
- E. Hashemi, K. Khalilnezhad and H. Ghadiri, Baer and quasi-Baer properties of skew PBW extensions, J. Algebr. Syst., 7(1) (2019), 1-24.
- E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar., 107(3) (2005), 207-224.
- E. Hashemi, A. Moussavi and H. H. Seyyed Javadi, Polynomial Ore extensions of Baer and p.p.-rings, Bull. Iranian Math. Soc., 29(2) (2003), 65-86.
- Y. Hirano, Some studies on strongly $\pi$-regular rings, Math. J. Okayama Univ., 20(2) (1978), 141-149.
- C. Y. Hong, N. K. Kim and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra, 151(3) (2000), 215-226.
- C. Y. Hong, T. K. Kwak and S. T. Rizvi, Rigid ideals and radicals of Ore extensions, Algebra Colloq., 12(3) (2005), 399-412.
- A. P. Isaev, P. N. Pyatov and N. Rittenberg, Diffusion algebras, J. Phys. A., 34 (2001), 5815-5834.
- A. Kandri-Rody and V. Weispfenning, Noncommutative Grobner bases in algebras of solvable type, J. Symbolic Comput., 9(1) (1990), 1-26.
- P. Kanwar, A. Leroy and J. Matczuk, Idempotents in ring extensions, J. Algebra, 389(1) (2013), 128-136.
- P. Kanwar, A. Leroy and J. Matczuk, Clean elements in polynomial rings, Contemp. Math., 634 (2015), 197-204.
- O. A. S. Karamzadeh, On constant products of polynomials, Int. J. Math. Edu. Technol., 18 (1987), 627-629.
- J. Krempa, Some examples of reduced rings, Algebra Colloq., 3(4) (1996), 289-300.
- T. Y. Lam, A First Course in Noncommutative Rings, 2nd ed., Graduate Texts in Mathematics, Vol. 131, Springer-Verlag, New York, 2001.
- O. Lezama, J. P. Acosta and A. Reyes, Prime ideals of skew PBW extensions, Rev. Un. Mat. Argentina, 56(2) (2015), 39-55.
- O. Lezama and C. Gallego, d-Hermite rings and skew PBW extensions, Sao Paulo J. Math. Sci., 10(1) (2016), 60-72.
- O. Lezama and A. Reyes, Some homological properties of skew PBW extensions, Comm. Algebra, 42(3) (2014), 1200-1230.
- Z. K. Liu and R. Y. Zhao, On weak Armendariz rings, Comm. Algebra, 34(7) (2006), 2607-2616.
- M. Louzari and A. Reyes, Minimal prime ideals of skew PBW extensions over 2-primal compatible rings, Rev. Colombiana Mat., 54(1) (2020), 27-51.
- G. Marks, A taxonomy of 2-primal rings, J. Algebra, 266(2) (2003), 494-520.
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Graduate Studies in Mathematics, 30, American Mathematical Society, Providence, RI, 2001.
- W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 229 (1977), 269-278.
- W. K. Nicholson and Y. Zhou, Clean rings: A survey, in Advances in Ring Theory, World Sci. Publ., Hackensack, NJ, (2005), 181-198.
- A. Nino, M. C. Ramirez and A. Reyes, Associated prime ideals over skew PBW extensions, Comm. Algebra, (2020), https://doi.org/10.1080/00927872.2020.1778012.
- A. Nino and A. Reyes, Some ring theoretical properties of skew Poincare-Birkhoff-Witt extensions, Bol. Mat., 24(2) (2017), 131-148.
- O. Ore, Theory of non-commutative polynomials, Ann. of Math. Second Series, 34(3) (1933), 480-508.
- A. Reyes, Skew PBW extensions of Baer, quasi-Baer, p.p. and p.q.-rings, Rev. Integr. Temas Mat., 33(2) (2015), 173-189.
- A. Reyes, $\sigma$-PBW extensions of skew $\Pi$-Armendariz rings, Far East J. Math. Sci., 103(2) (2018), 401-428.
- A. Reyes, Armendariz modules over skew PBW extensions, Comm. Algebra, 47(3) (2019), 1248-1270.
- A. Reyes and C. Rodriguez, The McCoy condition on skew PBW extensions, Commun. Math. Stat., (2019), https://doi.org/10.1007/s40304-019-00184-5.
- A. Reyes and H. Suarez, Armendariz property for skew PBW extensions and their classical ring of quotients, Rev. Integr. Temas Mat., 34(2) (2016), 147-168.
- A. Reyes and H. Suarez, Bases for quantum algebras and skew Poincare-Birkhoff-Witt extensions, Momento, 54(1) (2017), 54-75.
- A. Reyes and H. Suarez, PBW bases for some 3-dimensional skew polynomial algebras, Far East J. Math. Sci., 101(6) (2017), 1207-1228.
- A. Reyes and H. Suarez, $\sigma$-PBW extensions of skew Armendariz rings, Adv. Appl. Clifford Algebr., 27(4) (2017), 3197-3224.
- A. Reyes and H. Suarez, A notion of compatibility for Armendariz and Baer properties over skew PBW extensions, Rev. Un. Mat. Argentina, 59(1) (2018), 157-178.
- A. Reyes and Y. Suarez, On the ACCP in skew Poincare-Birkhoff-Witt extensions, Beitr. Algebra Geom., 59(4) (2018), 625-643.
- A. Reyes and H. Suarez, Skew Poincare-Birkhoff-Witt extensions over weak zip rings, Beitr. Algebra Geom., 60(2) (2019), 197-216.
- A. Reyes and H. Suarez, Radicals and Köthe's conjecture for skew PBW extensions, Commun. Math. Stat., (2019), https://doi.org/10.1007/s40304-019-00189-0.
- A. L. Rosenberg, Noncommutative Algebraic Geometry and Representations of Quantized Algebras, Mathematics and Its Applications, Vol. 330, Kluwer Academic Publishers Group, Dordrecht, 1995.
- G. Y. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc., 184 (1973), 43-60.
- H. Suarez, O. Lezama and A. Reyes, Calabi-Yau property for graded skew PBW extensions, Rev. Colombiana Mat., 51(2) (2017), 221-239.
- H. Suarez and A. Reyes, A generalized Koszul property for skew PBW extensions, Far East J. Math. Sci., 101(2) (2017), 301-320.
A CLASSIFICATION OF RING ELEMENTS IN SKEW PBW EXTENSIONS OVER COMPATIBLE RINGS
Yıl 2020,
Cilt: 28 Sayı: 28, 75 - 97, 14.07.2020
Maryam Hamıdızadeh
Ebrahim Hashemı
Armando Reyes
Öz
For a skew PBW extension over a right duo compatible ring, we characterize several kinds of their elements such as units, idempotent, von Neumann regular, $\pi$-regular and the clean elements. As a consequence of our treatment, we extend several results in the literature for Ore extensions and commutative rings. $~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$
Kaynakça
- A. Alhevaz and A. Moussavi, On skew Armendariz and skew quasi-Armendariz modules, Bull. Iranian Math. Soc., 38(1) (2012), 55-84.
- D. F. Anderson and A. Badawi, Von Neumann regular and related elements in commutative rings, Algebra Colloq., 19(1) (2012), 1017-1040.
- S. Annin, Associated primes over Ore extension rings, J. Algebra Appl., 3(2) (2004), 193-205.
- J. Apel, Grobnerbasen in Nichtkommutativen Algebren und ihre Anwendung, PhD Thesis, Leipzig, Karl-Marx-Univ., 1988.
- V. A. Artamonov, Derivations of skew PBW extensions, Commun. Math. Stat., 3(4) (2015), 449-457.
- V. A. Artamonov, O. Lezama and W. Fajardo, Extended modules and Ore extensions, Commun. Math. Stat., 4(2) (2016), 189-202.
- A. Badawi, On abelian $\pi$-regular rings, Comm. Algebra, 25(4) (1997), 1009-1021.
- V. V. Bavula, Generalized Weyl algebras and their representations, (Russian) Algebra i Analiz, 4(1) (1992), 75-97; translation in St. Petersburg Math. J., 4(1) (1993), 71-92.
- T. Becker and V.Weispfenning, Grobner Bases, A Computational Approach to Commutative Algebra, Graduate Texts in Mathematics, 141, Springer-Verlag, New York, 1993.
- H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc., 2 (1970), 363-368.
- A. D. Bell and K. R. Goodearl, Uniform rank over differential operator rings and Poincare-Birkhoff-Witt extensions, Pacic J. Math., 131(11) (1988), 13-37.
- G. F. Birkenmeier, H. E. Heatherly and E. K. Lee, Completely prime ideals and associated radicals, in Proc. Biennial Ohio State - Denison Conf., Granville, USA, (1992), eds. S. K. Jain and S. T. Rizvi, World Sci. Publ., River Edge, New Jersey, (1993), 102-129.
- K. A. Brown and K. R. Goodearl, Lectures on Algebraic Quantum Groups, Advanced Courses in Mathematics, CRM Barcelona, Birkhauser Verlag, Basel, 2002.
- J. L. Bueso, J. Gomez-Torrecillas and F. J. Lobillo, Homological computations in PBW modules, Algebr. Represent. Theory, 4(3) (2001), 201-218.
- J. L. Bueso, J. Gomez-Torrecillas and A. Verschoren, Algorithmic Methods in Non-commutative Algebra, Applications to Quantum Groups, Mathematical Modelling: Theory and Applications, 17, Kluwer Academic Publishers, Dordrecht, 2003.
- W.-X. Chen and S.-Y. Cui, On weakly semicommutative rings, Commun. Math. Res., 27(2) (2011), 179-192.
- M. Contessa, On certain classes of pm-rings, Comm. Algebra, 12(11-12) (1984), 1447-1469.
- C. Gallego and O. Lezama, Grobner bases for ideals of $\sigma$-PBW extensions, Comm. Algebra, 39(1) (2011), 50-75.
- M. Habibi, A. Moussavi and A. Alhevaz, The McCoy condition on Ore extensions, Comm. Algebra, 41(1) (2013), 124-141.
- E. Hashemi, Compatible ideals and radicals of Ore extensions, New York J. Math., 12 (2006), 349-356.
- E. Hashemi, M. Hamidizadeh and A. Alhevaz, Some types of ring elements in Ore extensions over noncommutative rings, J. Algebra Appl., 16(11) (2017), 1750201 (17 pp).
- E. Hashemi, K. Khalilnezhad and A. Alhevaz, $(\Sigma, \Delta)$-Compatible skew PBW extension ring, Kyungpook Math. J., 57(3) (2017), 401-417.
- E. Hashemi, K. Khalilnezhad and A. Alhevaz, Extensions of rings over 2-primal rings, Matematiche (Catania), 74(1) (2019), 141-162.
- E. Hashemi, K. Khalilnezhad and H. Ghadiri, Baer and quasi-Baer properties of skew PBW extensions, J. Algebr. Syst., 7(1) (2019), 1-24.
- E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar., 107(3) (2005), 207-224.
- E. Hashemi, A. Moussavi and H. H. Seyyed Javadi, Polynomial Ore extensions of Baer and p.p.-rings, Bull. Iranian Math. Soc., 29(2) (2003), 65-86.
- Y. Hirano, Some studies on strongly $\pi$-regular rings, Math. J. Okayama Univ., 20(2) (1978), 141-149.
- C. Y. Hong, N. K. Kim and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra, 151(3) (2000), 215-226.
- C. Y. Hong, T. K. Kwak and S. T. Rizvi, Rigid ideals and radicals of Ore extensions, Algebra Colloq., 12(3) (2005), 399-412.
- A. P. Isaev, P. N. Pyatov and N. Rittenberg, Diffusion algebras, J. Phys. A., 34 (2001), 5815-5834.
- A. Kandri-Rody and V. Weispfenning, Noncommutative Grobner bases in algebras of solvable type, J. Symbolic Comput., 9(1) (1990), 1-26.
- P. Kanwar, A. Leroy and J. Matczuk, Idempotents in ring extensions, J. Algebra, 389(1) (2013), 128-136.
- P. Kanwar, A. Leroy and J. Matczuk, Clean elements in polynomial rings, Contemp. Math., 634 (2015), 197-204.
- O. A. S. Karamzadeh, On constant products of polynomials, Int. J. Math. Edu. Technol., 18 (1987), 627-629.
- J. Krempa, Some examples of reduced rings, Algebra Colloq., 3(4) (1996), 289-300.
- T. Y. Lam, A First Course in Noncommutative Rings, 2nd ed., Graduate Texts in Mathematics, Vol. 131, Springer-Verlag, New York, 2001.
- O. Lezama, J. P. Acosta and A. Reyes, Prime ideals of skew PBW extensions, Rev. Un. Mat. Argentina, 56(2) (2015), 39-55.
- O. Lezama and C. Gallego, d-Hermite rings and skew PBW extensions, Sao Paulo J. Math. Sci., 10(1) (2016), 60-72.
- O. Lezama and A. Reyes, Some homological properties of skew PBW extensions, Comm. Algebra, 42(3) (2014), 1200-1230.
- Z. K. Liu and R. Y. Zhao, On weak Armendariz rings, Comm. Algebra, 34(7) (2006), 2607-2616.
- M. Louzari and A. Reyes, Minimal prime ideals of skew PBW extensions over 2-primal compatible rings, Rev. Colombiana Mat., 54(1) (2020), 27-51.
- G. Marks, A taxonomy of 2-primal rings, J. Algebra, 266(2) (2003), 494-520.
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Graduate Studies in Mathematics, 30, American Mathematical Society, Providence, RI, 2001.
- W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc., 229 (1977), 269-278.
- W. K. Nicholson and Y. Zhou, Clean rings: A survey, in Advances in Ring Theory, World Sci. Publ., Hackensack, NJ, (2005), 181-198.
- A. Nino, M. C. Ramirez and A. Reyes, Associated prime ideals over skew PBW extensions, Comm. Algebra, (2020), https://doi.org/10.1080/00927872.2020.1778012.
- A. Nino and A. Reyes, Some ring theoretical properties of skew Poincare-Birkhoff-Witt extensions, Bol. Mat., 24(2) (2017), 131-148.
- O. Ore, Theory of non-commutative polynomials, Ann. of Math. Second Series, 34(3) (1933), 480-508.
- A. Reyes, Skew PBW extensions of Baer, quasi-Baer, p.p. and p.q.-rings, Rev. Integr. Temas Mat., 33(2) (2015), 173-189.
- A. Reyes, $\sigma$-PBW extensions of skew $\Pi$-Armendariz rings, Far East J. Math. Sci., 103(2) (2018), 401-428.
- A. Reyes, Armendariz modules over skew PBW extensions, Comm. Algebra, 47(3) (2019), 1248-1270.
- A. Reyes and C. Rodriguez, The McCoy condition on skew PBW extensions, Commun. Math. Stat., (2019), https://doi.org/10.1007/s40304-019-00184-5.
- A. Reyes and H. Suarez, Armendariz property for skew PBW extensions and their classical ring of quotients, Rev. Integr. Temas Mat., 34(2) (2016), 147-168.
- A. Reyes and H. Suarez, Bases for quantum algebras and skew Poincare-Birkhoff-Witt extensions, Momento, 54(1) (2017), 54-75.
- A. Reyes and H. Suarez, PBW bases for some 3-dimensional skew polynomial algebras, Far East J. Math. Sci., 101(6) (2017), 1207-1228.
- A. Reyes and H. Suarez, $\sigma$-PBW extensions of skew Armendariz rings, Adv. Appl. Clifford Algebr., 27(4) (2017), 3197-3224.
- A. Reyes and H. Suarez, A notion of compatibility for Armendariz and Baer properties over skew PBW extensions, Rev. Un. Mat. Argentina, 59(1) (2018), 157-178.
- A. Reyes and Y. Suarez, On the ACCP in skew Poincare-Birkhoff-Witt extensions, Beitr. Algebra Geom., 59(4) (2018), 625-643.
- A. Reyes and H. Suarez, Skew Poincare-Birkhoff-Witt extensions over weak zip rings, Beitr. Algebra Geom., 60(2) (2019), 197-216.
- A. Reyes and H. Suarez, Radicals and Köthe's conjecture for skew PBW extensions, Commun. Math. Stat., (2019), https://doi.org/10.1007/s40304-019-00189-0.
- A. L. Rosenberg, Noncommutative Algebraic Geometry and Representations of Quantized Algebras, Mathematics and Its Applications, Vol. 330, Kluwer Academic Publishers Group, Dordrecht, 1995.
- G. Y. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc., 184 (1973), 43-60.
- H. Suarez, O. Lezama and A. Reyes, Calabi-Yau property for graded skew PBW extensions, Rev. Colombiana Mat., 51(2) (2017), 221-239.
- H. Suarez and A. Reyes, A generalized Koszul property for skew PBW extensions, Far East J. Math. Sci., 101(2) (2017), 301-320.