TY - JOUR T1 - miRNA and Biogenesis AU - Suvarıklı Alan, Beyza AU - Nizamlıoğlu, Mehmet AU - Bulut, Zafer PY - 2021 DA - December DO - 10.53913/aduveterinary.1008317 JF - Animal Health Production and Hygiene JO - Animal Health, Prod and Hyg PB - Aydın Adnan Menderes Üniversitesi WT - DergiPark SN - 2146-7269 SP - 58 EP - 65 VL - 10 IS - 2 LA - en AB - The number of uncoded (non-coding; nc) RNAs with unknown functions is increasing. Since their first detections especially miRNA of ncRNAs have become very important. In fact, their importance has been well understood and their relations with diseases are more evident. It is clear that they can be used in the diagnosis of most diseases in the future. Northern hybridization, flow cytometry, cloning, qPCR, sequencing and microarray analysis can be used for miRNA detection. KW - miRNA KW - Drosha KW - Dicer CR - Agrawal, N., Dasaradhi, P.V., Mohmmed, A., Malhotra, P., Bhatnagar, R.K., & Mukherjee, S.K., (2003). RNA interference: biology, mechanism, and applications. Microbiology and Molecular Biology Reviews, 67 (4), 657-85. doi: 10.1128/MMBR.67.4.657-685.2003 CR - Alvarez-Garcia, I., & Miska, E.A., (2005). MicroRNA functions in animal development and human disease. Development, 132 (21), 4653-62. doi: 10.1242/dev.02073 CR - Ambros, V., Bartel, B., Bartel, D.P., Burge, C.B., Carrington, J.C., Chen, X., Dreyfuss, G., Eddy, S.R., Griffiths-Jones, S., Marshall, M., Matzke, M., Ruvkun, G., & Tuschl, T., (2003). A uniform system for microRNA annotation. RNA, 9 (3), 277-9. doi: 10.1261/rna.2183803 CR - Bartel, D.P., (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116 (2), 281-97. doi: 10.1016/s0092-8674(04)00045-5 CR - Bartel, D.P., (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136 (2), 215-33. doi: 10.1016/j.cell.2009.01.002 CR - Bernstein, E., Caudy, A.A., Hammond, S.M., & Hannon, G.H., (2001). Role For A Bidentate Ribonuclease in The Initation Step of RNA Interference. Nature, 409, 363- 366. doi: 10.1038/35053110 CR - Betancur, J.G., & Tomari, Y., (2012). Dicer is dispensable for asymmetric RISC loading in mammals. RNA, 18 (1), 24-30. doi: 10.1261/rna.029785.111 CR - Betel, D., Wilson, M., Gabow, A., Marks, D.S., & Sander, C., (2007). The microRNA.org resource: targets and expression. Nucleic Acids Research, 36 (Database), 149-153. doi: 10.1093/nar/gkm995 CR - Cai, X., Hagedorn, C.H., & Cullen, B.R., (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 10 (12), 1957-66. doi: 10.1261/rna.7135204 CR - Carrington, J.C., & Ambros, V., (2003). Role of microRNAs in plant and animal development. Science, 301, 336–338. doi: 10.1126/science.1085242 CR - Carthew, R.W., & Sontheimer, E.J., (2009). Origins and Mechanisms of miRNAs and siRNAs. Cell, 136 (4), 642-55. doi: 10.1016/j.cell.2009.01.035 CR - Collins, R.E., & Cheng, X., (2005). Structural domains in RNAi. FEBS Letters, 579 (26), 5841-9. doi.org/10.1016/j.febslet.2005.07.072 CR - Court, D.L., Gan, J., Liang, Y.H., Shaw, G.X., Tropea, J.E., Costantino, N., Waugh, D.S., & Ji, X., (2013). RNase III: Genetics and function; structure and mechanism. Annual Review of Genetics, 47, 405-31. doi: 10.1146/annurev-genet-110711-155618 CR - Cowland, J.B., Hother, C., & Gronbaek, K., (2007). MicroRNAs and cancer. APMIS, 115 (10), 1090-106. doi: 10.1111/j.1600-0463.2007.apm_775.xml.x CR - Denli, A.M., & Hannon, G.J., (2003). RNAi: an ever-growing puzzle. Trends in Biochemical Sciences, 28 (4), 196-201. doi: 10.1016/S0968-0004(03)00058-6 CR - Doench, J.G., Petersen, C.P., & Sharp, P.A., (2018). siRNAs can function as miRNAs. Genes & Development, 17 (4), 438–42. doi: 10.1101/gad.1064703 CR - Du, T., & Zamore, P.D., (2005). microPrimer: the biogenesis and function of microRNA. Development, 132 (21), 4645-52. doi.org/10.1242/dev.02070 CR - Dwivedi, S., Purohit, P., & Sharma, P., (2019). MicroRNAs and Diseases: Promising Biomarkers for Diagnosis and Therapeutics. Indian Journal of Clinical Biochemistry, 34 (3), 243-5. doi: 10.1007/s12291-019-00844-x CR - Ghildiyal, M., & Zamore, P.D., (2009). Small silencing RNAs: an expanding universe. Nature Reviews Genetics, 10 (2), 94-108. doi: 10.1038/nrg2504 CR - Graves, P., & Zeng, Y., (2012). Biogenesis of Mammalian MicroRNAs: A Global View. Genomics Proteomics Bioinformatics. 10 (5), 239–245. doi: 10.1016/j.gpb.2012.06.004 CR - Fire, A., Xu, S.Q., Montgomery, M.K., Kostas, S.A., Driver, S.E., & Mello, C.C., (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806-811. doi: 10.1038/35888 CR - Ha, M., & Kim, V.N., (2014). Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology, 15 (8), 509-524. doi:10.1038/nrm3838 CR - Hall, T.M., (2005). Structure and function of argonaute proteins. Structure, 13 (10), 1403-1408. doi: 10.1016/j.str.2005.08.005 CR - Han, J., Lee, Y., Yeom, K.H., Kim, Y.K., Jin, H., & Kim, V.N., (2004). The Drosha-DGCR8 complex in primary microRNA processing. Genes & Development, 18 (24), 3016-3027. doi: 10.1101/gad.1262504 CR - Höck, J., & Meister, G., (2008). Protein family review The Argonaute protein family. Genome Biology, 9 (2),210, doi: 10.1186/gb-2008-9-2-210 CR - Hutvagner, G., & Simard, M.J., (2008). Argonaute proteins: key players in RNA silencing. Nature Reviews Molecular Cell Biology, 9 (1), 22-32. doi: 10.1038/nrm2321 CR - Hydbring, P., & Badalian-Very, G., (2013). Clinical applications of microRNAs. F1000 Research, 6 (2), 136. doi: 10.12688/f1000research.2-136.v3 CR - Jansson, M.D., & Lund, A.H., (2012). MicroRNA and cancer. Molecular Oncology, 6 (6), 590-610. doi.org/10.1016/j.molonc.2012.09.006 CR - Jedrzejczyk, D., Gendaszewska-Darmach, E., Pawlowska, R., & Chworos, A., (2017). Designing synthetic RNA for delivery by nanoparticles. Journal of Physics: Condensed Matter, 29 (12), 123001. doi: 10.1088/1361-648X/aa5561 CR - Karginov, F.V., Cheloufi, S., Chong, M.M., Stark, A., Smith, A.D., & Hannon, G.J., (2010). Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases. Molecular Cell, 38 (6), 781-788. doi: 10.1016/j.molcel.2010.06.001 CR - Kim, D., & Rossi, J., (2008). RNAi mechanisms and applications. Biotechniques, 44 (5), 613-616. doi: 10.2144/000112792 CR - Kim, V.N., Han, J., & Siomi, M.C., (2009). Biogenesis of small RNAs in animals. Nature Reviews Molecular Cell Biology, 10 (2), 126-139. doi: 10.1038/nrm2632 CR - Krol, J., Loedige, I., & Filipowicz, W., (2010). The widespread regulation of microRNA biogenesis, function and decay. Nature Reviews Genetics, 11 (9), 597-610. doi: 10.1038/nrg2843 CR - Kwon, S.C., Nguyen, T.A., Choi, Y.G., Jo, M.H., Hohng, S., Kim, V.N., & Woo, J.S., (2016). Structure of Human DROSHA. Cell, 164 (1-2), 81-90. doi: 10.1016/j.cell.2015.12.019 CR - Lee, R.C., Feinbaum, R.L., & Ambros, V., (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75 (5), 843–854. doi: 10.1016/0092-8674(93)90529-y CR - Lei, E.P., & Silver, P.A., (2002). Protein and RNA export from the nucleus. Developmental Cell, 2 (3), 261-272. doi.org/10.1016/S1534-5807(02)00134-X CR - Lucas, K., & Raikhel, A.S., (2013). Insect microRNAs: biogenesis, expression profiling and biological functions. Insect Biochemistry and Molecular Biology, 43 (1), 24-38. doi: 10.1016/j.ibmb.2012.10.009 CR - MacFarlane, L., & Murphy, P.R., (2010). MicroRNA: Biogenesis, Function and Role in Cancer. Current Genomics, 11 (7), 537-561. doi: 10.2174/138920210793175895 CR - MacRae, I.J., Zhou, K., Li, F., Repic, A., Brooks, A.N., Cande, W.Z., Adams, P.D., & Doudna, J.A., (2006). Structural basis for double-stranded RNA processing by Dicer. Science, 311 (5758), 195-198. doi: 10.1126/science.1121638 CR - Macrae, I.J., Li, F., Zhou, K., Cande, W.Z., & Doudna, J.A., (2006). Structure of Dicer and mechanistic implications for RNAi. Cold Spring Harbor Symposia on Quantitative Biology, 71 (71), 73-80. doi: 10.1101/sqb.2006.71.042 CR - MacRae, I.J., & Doudna, J.A., (2007). Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Current Opinion in Structural Biology, 17 (1), 138-145. doi: 10.1016/j.sbi.2006.12.002 CR - Mattick, J.S., & Makunin, I.V., (2006). Non-coding RNA. Human Molecular Genetics, 15 (1), 17-29. doi.org/10.1093/hmg/ddl046 CR - Melo, C.A., & Melo, S.A., (2013). Biogenesis and Physiology of MicroRNAs. Non-coding RNAs and Cancer, 5-24. doi: 10.1007/978-1-4614-8444-8_2 CR - Mortimer, S.A., Kidwell, M.A., & Doudna, J.A., (2014). Insights into RNA structure and function from genome-wide studies. Nature Reviews Genetics, 15 (7), 469-79. doi: 10.1038/nrg3681 CR - Napoli, C., Lemieux, C., & Jorgensen, R., (1990). Introduction of a chimeric chalcone synthase gene into Petunia result in supression of homologous revesible co-supression of homologous genes in trans. The Plant Cell, 2 (4), 279-289. doi: 10.1105/tpc.2.4.279 CR - Olena, A.F., & Patton, J.G., (2010). Genomic organization of microRNAs. Journal of Cellular Physiology, 222 (3), 540-545. doi: 10.1002/jcp.21993 CR - Pillai, R.S., (2005). MicroRNA function: multiple mechanisms for a tiny RNA?, RNA, 11 (12), 1753-1761. doi: 10.1261/rna.2248605 CR - Raja, M.A.G., Katas, H., & Amjad, M.W., (2019). Design, mechanism, delivery and therapeutics of canonical and Dicer-substrate siRNA. Asian Journal of Pharmaceutics Science, 14 (5), 497-510. doi.org/10.1016/j.ajps.2018.12.005 CR - Santosh, B., Varshney, A., & Yadava, P.K., (2014). Non-coding RNAs: biological functions and applications. Cell Biochemistry & Function, 33 (1), 14-22. doi: 10.1002/cbf.3079 CR - Shabalina, S.A., & Koonin, E.V., (2008). Origins and evolution of eukaryotic RNA interference. Trends Ecology Evolution, 23 (10), 578-587. doi: 10.1016/j.tree.2008.06.005 CR - Shukla, G.C., Singh, J., & Barik, S., (2011). MicroRNAs: Processing, Maturation, Target Recognition and Regulatory Functions. Molecular and cellular pharmacology, 3 (3), 83-92. doi: 10.4255/mcpharmacol.11.13 CR - Singh, S.K., Pal Bhadra, M., Girschick, H.J., & Bhadra, U., (2008). MicroRNAs--micro in size but macro in function. The FEBS Journal, 275 (20), 4929-4944. doi: 10.1111/j.1742-4658.2008.06624.x CR - Song, M.S., & Rossi, J.J., (2017). Molecular mechanisms of Dicer: endonuclease and enzymatic activity. Biochemical Journal, 474 (10), 1603-18. doi: 10.1042/BCJ20160759 CR - Tetreault, N., & De Guire, V., (2013). miRNAs: their discovery, biogenesis and mechanism of action. Clinical Biochemistry, 46 (10-11), 842-845. doi: 10.1016/j.clinbiochem.2013.02.009 CR - Tijsterman, M., & Plasterk, P.H., (2004). Dicers at RISC; the mechanism of RNAi, Cell, 117 (1), 1-3. doi: 10.1016/s0092-8674(04)00293-4 CR - Tomari, Y., & Zamore, P.D., (2018). Perspective: machines for RNAi. Genes & Development, 19 (5), 517–529. doi: 10.1101/gad.1284105 CR - Vermeulen, A., Behlen, L., Reynolds, A., Wolfson, A., Marshall, W.S., Karpilow, J., & Khvorova, A., (2005). The contributions of dsRNA structure to Dicer specificity and efficiency. RNA, 11 (5), 674-682. doi: 10.1261/rna.7272305 CR - Wahid, F., Shehzad, A., Khan, T., & Kim, Y.Y., (2010). MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochimica et Biophysica Acta, 1803 (11), 1231-43. doi: 10.1016/j.bbamcr.2010.06.013 CR - Wienholds, E., & Plasterk, R.H., (2005). MicroRNA function in animal development. FEBS Letters, 579 (26), 5911-5922. doi: 10.1016/j.febslet.2005.07.070 CR - Williams, T., Ngo, L.H., & Wickramasinghe, V.O., (2018). Nuclear export of RNA: Different sizes, shapes and functions. Seminars in Cell and Developmental Biology, 75, 70-77. doi: 10.1016/j.semcdb.2017.08.054 CR - Wilson, R.C., & Doudna, J.A., (2013). Molecular mechanisms of RNA interference. Annual Review of Biophysics, 42 (1), 217-239. doi: 10.1146/annurev-biophys-083012-130404 CR - Wightman, B., & Ha, I.G.R., (1993). Posttranscriptional Regulation of the Heterochronic Gene lin-14 by W-4 Mediates Temporal Pattern Formation in C. elegans. Cell, 75 (5), 855-862. doi: 10.1016/0092-8674(93)90530-4 CR - Xu, W., Jiang, X., & Huang, L., (2019). RNA Interference Technology. In: Comprehensive Biotechnology, 560-575. doi: 10.1016/B978-0-444-64046-8.00282-2 CR - Zamore, P.D., Tuschl, T., Sharp, P.A, & Bartel, D.P., (2000). RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 101 (1), 25-33. doi: 10.1016/S0092-8674(00)80620-0 UR - https://doi.org/10.53913/aduveterinary.1008317 L1 - https://dergipark.org.tr/tr/download/article-file/2021461 ER -