@article{article_1015962, title={DCGAN ve Siyam Sinir Ağını Kullanarak Demiryolu Bağlantı Elemanlarındaki Kusurların Tespiti}, journal={Demiryolu Mühendisliği}, pages={46–59}, year={2022}, DOI={10.47072/demiryolu.1015962}, author={Güçlü, Emre and Aydın, İlhan and Akın, Erhan}, keywords={Siyam Sinir Ağı, Bağlantı Elemanı, Kusur Tespiti}, abstract={Bağlantı elemanlarındaki kusurların tespiti, demiryolu denetiminin önemli bir parçasıdır. Bu nedenle son yıllarda, bağlantı elemanlarının hızlı ve güvenilir bir şekilde denetlenebilmesi için otomatik denetim sistemlerine ihtiyaç duyulmaktadır. Otomatik denetim sistemlerinde derin öğrenme gibi yöntemler kullanılmaktadır. Ancak bu tür yöntemler, eğitim için çok fazla veri setine ihtiyaç duyarlar. Geleneksel bir evrişimli sinir ağı küçük bir veri seti ile özellikleri öğrenemez. Eğitim işlemi için sağlam bağlantı elemanlarından oluşan veri setini oluşturmak kolay olmasına rağmen kusurlu bağlantı elemanlarından oluşan veri setini oluşturmak oldukça zordur. Bu tür veri setini oluşturmak için yüzlerce kilometre demiryolundan görüntü toplanması gerekebilir. Bu nedenle bu çalışmada, DCGAN kullanılarak yapay deforme bağlantı elemanı görüntüleri oluşturulup veri seti çoğaltılmıştır. Ardından, siyam sinir ağı ile bağlantı elemanlarının kusur durumu incelenmiştir. Çalışmada, sağlam ve deforme olmak üzere iki bağlantı elemanı sınıfı bulunmaktadır. Her sınıf için farklı sınıfların görüntüleri arasındaki benzerlik puanları hesaplanmıştır. Temel fikir, bağlantı elemanlarını benzerlik puanlarını kullanarak ve karşılaştırma yaparak tanımlamaktır. Deneysel sonuçlarda, önerilen yöntem için %98,23 doğruluk oranı elde edilerek, geleneksel yöntemlere göre avantajı gösterilmiştir.}, number={15}, publisher={Demiryolu Mühendisleri Derneği}, organization={TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU}