TY - JOUR T1 - Bioactive Properties of Different Parts of Vitis labrusca L. Fruit TT - Vitis labrusca L. Meyvesinin Farklı Kısımlarının Biyoaktif Özellikleri AU - Tekgüler, Belkis AU - Koca, İlkay AU - Türkyılmaz, Burcin PY - 2021 DA - December Y2 - 2021 DO - 10.31594/commagene.1016721 JF - Commagene Journal of Biology JO - Comm. J. Biol. PB - ABADER (Adıyaman Bilimsel Araştırmalar Derneği) WT - DergiPark SN - 2602-456X SP - 193 EP - 198 VL - 5 IS - 2 LA - en AB - Vitus labrusca L. is a fragrant grape variety that is widely grown in our country and the world. In addition to being consumed as a table grape, it is also consumed by processing into different products such as wine, vinegar, and molasses. This fruit and its residues, revealed after processing into the product, are rich in phenolic compounds. The residues of the grape can be evaluated due to their bioactive potential. In this study, the bioactive characteristics of V. labrusca L. grown in Samsun were investigated. Total phenolic, antioxidative activity properties and oleanolic acid levels were determined in order to reveal their bioactive properties. For this purpose, the whole fruits, skin, and seed parts of the fruits were analyzed separately. It is concluded that the highest values as the total phenolics (1519.68±280.05 mg kg-1), oleanolic acid (351.32±91.42 mg kg-1), and antioxidant values (FRAP: 22.13±6.77 µmol Fe2+g-1) were determined in the skin of fruit. Furthermore, when the relationship between the natural antioxidant contents and the antioxidant activity examined, there was a negative correlation between the total phenolics and DPPH reducing value (as EC50). In conclusion, it is considered that the residues of the grape should be evaluated for their bioactive potential due to V. labrusca L. Fruits being rich in bioactive compounds, and these compounds are mainly concentrated in the skin part. KW - Antioxidant activity KW - grape KW - oleanolic acid KW - triterpenoids. N2 - Vitus labrusca L. ülkemizde ve dünyada yaygın olarak yetiştirilen kokulu bir üzüm çeşididir. Sofralık üzüm olarak tüketilmesinin yanı sıra şarap, sirke ve pekmez gibi farklı ürünlere işlenerek de tüketilmektedir. Bu meyve ve ürüne işlendikten sonraki kalıntıları fenolik bileşikler açısından zengindir. Üzüm kalıntıları biyoaktif potansiyelleri nedeniyle değerlendirilebilir. Bu çalışmada, Samsun’da yetiştirilen V. labrusca L.’nın biyoaktif özellikleri araştırılmıştır. Biyoaktif özelliklerini ortaya koymak için toplam fenolik madde, antioksidan aktivite özellikleri ve oleanolik asit miktarları belirlenmiştir. Bu amaçla meyveler bütün olarak, kabuk ve çekirdek kısımları ayrı ayrı analiz edilmiştir. Toplam fenolik madde (1519.68±280.05 mg kg-1), oleanolik asit (351.32±91.42 mg kg-1) ve antioksidan aktivite değerleri (FRAP: 22.13±6.77 µmol Fe2+g-1) en fazla meyvelerin kabuk kısmında belirlenmiştir. Ayrıca, doğal antioksidan içerikleri ile antioksidan aktivite arasındaki ilişki incelendiğinde, toplam fenolik madde ile DPPH indirgeme değeri (EC50 olarak) arasında negatif bir ilişki olduğu görülmüştür. Sonuç olarak, V. labrusca L. meyvelerinin biyoaktif bileşiklerce zengin olması ve bu bileşiklerin ağırlıklı olarak kabuk kısmında yoğunlaşması nedeniyle üzüm kalıntılarının biyoaktif potansiyelleri açısından değerlendirilmesi gerektiği düşünülmektedir. CR - AOAC, (2000). Official Methods of Analysis of the Association of Official Analysis Chemists (17th ed). AOAC International, Gaithersburg, MD. CR - Ayeleso, T.B., Matumba M.G., & Mukwevho, E. (2017). Oleanolic acid and ıts derivatives: biological activities and therapeutic potential in chronic diseases. Molecules, 22(11), 1915. https://doi.org/10.3390/molecules-22111915 CR - Baydar, N.G., Ozkan, G., & Sagdic, O. (2004). Total phenolic contents and antibacterial activities of grape (Vitis vinifera L.) extracts. Food Control, 15, 335-339. https://doi.org/10.1016/S0956-7135(03)00083-5 CR - Benmeziane, F., Cadot,Y., Djamai, R., & Djermoun, L. (2016). Determination of major anthocyanin pigments and flavonols in red grape skin of some table grape varieties (Vitis vinifera sp.) by high-performance liquid chromatography–photodiode array detection (HPLC-DAD). OENO One, 50(3), 125-135. https://hal.archives-ouvertes.fr/hal-01606633 CR - Benzie, I.F.F., & Szeto, Y.T. (1999). Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry, 47(2), 633–636. https://doi.org/10.1021/jf9807768 CR - Boas, A.C.V., Henrique, P.C., Lima, L.C.O., & Neto, A.D. (2014). Antioxidant activity, anthocyanins and organic acids content of grape juices produced in southwest of Minas Gerais. Brazil Ciência e Agrotecnologia Lavras, 38, 480-486. https://doi.org/10.1590/S1413-70542014000500007 CR - Burin, V.M., Falcão, L.D., & Gonzaga, L.V. (2010). Colour, phenolic content and antioxidant activity of grape juice. Ciência e Tecnologia de Alimentos, 30(4), 1027-1032. https://doi.org/10.1590/S0101-20612010000400030 CR - Carrieri C., Milella R.A., Incampo F., Crupi P., Antonacci D., Semeraro N., & Colucci M. (2013). Antithrombotic activity of 12 table grape varieties. Relationship with polyphenolic profile. Food Chemistry 140(4), 647-653. https://doi.org/10.1016/j.foodchem.2012.10.132 CR - Chronopoulou, L., Agatone, A.C., & Palocci, C. (2013). Supercritical CO2 extraction of oleanolic acid from grape pomace. International Journal of Food Science & Technology, 48(9), 1854-1860. https://doi.org/10.1111/-ijfs.12161 CR - De Nisco M., Manfra M., Bolognese, A., Sofo A., Scopa A., Tenore G.C.,…. & Russo M.T. (2013). Nutraceutical properties and polyphenolic profile of berry skin and wine of Vitis vinifera L. (cv. Aglianico). Food Chemistry, 140(4), 623-629. https://doi.org/10.1016/j.foodchem.-2012.10.123 CR - Dwyer, K., Hosseinian, F., & Rod, M. (2014). The market potential of grape waste alternatives. Journal of Food Research, 3(2), 91-106. https://doi.org/10.5539/jfr.v3n2p91 CR - Fava J., Hodara K., Nieto, A., Guerrero S., Alzamora S.M., & Castro M.A. (2011). Structure (micro, ultra, nano), color and mechanical properties of Vitis labrusca L. (grape berry) fruits treated by hydrogen peroxide, UV–C irradiation and ultrasound. Food Research International, 44(9), 2938-2948. https://doi.org/10.1016/j.foodres.2011.06.053 CR - Georgiev, V., Ananga, A., & Tsolova, V. (2014). Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients, 6, 391-415. https://doi.org/10.3390/nu6010391 CR - Jayaprakasha, G.K., Selvi, T., & Sakariah K.K. (2003). Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extract. Food Research International, 36, 117-122. https://doi.org/10.1016/S0963-9969(02)00116-3 CR - Kang, Y.M. Lee, M., & An, H.J. (2021). Oleanolic acid protects against mast cell-mediated allergic responses by suppressing Akt/NF-κB and STAT1 activation. Phytomedicine, 80, 153340. https://doi.org/10.1016/j.phy-med.2020.153340 CR - Kobra A., Reza H.H., Reyhaneh S., & Atusa V. (2019). Antioxidant activity of aqueous extracts from Vitis vinifera’s wastes. Novel Approches in Drug Designing Development, 4(5), 555646. CR - Lago-Vanzela, E.S., Da-Silva, R., Gomes, E., García-Romero, E., & Hermosín-Gutiérrez, I. (2011). Phenolic composition of the edible parts (flesh and skin) of bordó grape (Vitis labrusca) using HPLC−DAD−ESI-MS/MS. Journal of Agricultural and Food Chemistry, 59(24), 13136-13146. https://doi.org/10.1021/jf203679n CR - Lara, I., Heredia, A., & Domínguez, E. (2019). Shelf life potential and the fruit cuticle: The unexpected player. Frontiers in Plant Science, 10, 770. 10:770. https://doi.org/10.3389/fpls.2019.00770 CR - Liu, T., Zhao, J., Ma, L., Ding, Y., & Su, D. (2012). Hepatoprotective effects of total triterpenoids and total flavonoids from Vitis vinifera L. against immunological liver injury in mice. Evidence-Based Complementary and Alternative Medicine, 1-8. https://doi.org/10.1155/2012/969386 CR - Orbán, N., Kozák I.O., Drávucz M., & Kiss A. (2009). LC-MS method development to evaluate major triterpenes in skins and cuticular waxes of grape berries. International Journal of Food Science and Technology, 44, 869-873. https://doi.org/10.1111/j.1365-2621.2008.01902.x CR - Pensec, F., Paczkowski, C., Grabarczyk, M., Woźniak, A., & Bénard-Gellon, M. (2014). Changes in the triterpenoid content of cuticular waxes during fruit ripening of eight grape (Vitis vinifera) cultivars grown in the upper Rhine Valley. Journal of Agricultural and Food Chemistry, 62, 7998-8007. https://doi.org/10.1021/jf502033s CR - Rockenbach, I.I, Gonzaga L.V., Rizelio V.M., Gonçalves A.E.S.S., Genovese M.I., & Fett R. (2011a). Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera L. and Vitis labrusca L.) pomace from Brazilian winemaking. Food Research International, 44(4), 897-901. https://doi.org/10.1016/j.foodres.2011.01.049 CR - Rockenbach, I.I, Rodrigues, E., Gonzaga L.V., Caliari, V., Genovese M.I., Gonçalves A.E.S.S., & Fett, R. (2011b). Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chemistry, 127(1), 174-179. https://doi.org/10.1016/j.foodchem.2010.12.137 CR - Sabra, A., Netticadan, T., & Wijekoon, C. (2021). Grape bioactive molecules, and the potential health benefits in reducing the risk of heart diseases. Food Chemistry, 12, 100149. https://doi.org/10.1016/j.fochx.2021.100149 CR - Santos, L.P., Morais, D.R., Souza, N.E., Cottica, S.M. Boroski, M., & Visentainer J. V. (2011). Phenolic compounds and fatty acids in different parts of Vitis labrusca and Vitis vinifera grapes. Food Research International, 44(5), 1414-1418. https://doi.org/10.1016/j.foodres.-2011.02.022 CR - Samavardhana, K., Supawititpattana, P., Jittrepotch, N., Kongbangkerd, T., & Rojsuntornkitti, K. (2015). Effects of extracting conditions on phenolic compounds and antioxidant activity from different grape processing byproducts. International Food Research Journal, 22(3), 1169-1179. CR - Shahidi, F., & Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects –A review. Journal of Functional Foods, 18, 820-897. http://dx.doi.org/10.1016/j.jff.2015.06.018 CR - Shao, D., Zhang, L., Du, S., Yokoyama, W., Shi, J., Li, N., & Wang, J. (2016). Polyphenolic content and color of seedless and seeded shade dried Chinese raisins. Food Science and Technology Research, 22(3), 359-369. https://doi.org/10.3136/fstr.22.359 CR - Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal Enology Viticulture,16(3), 144-158. CR - Tural, S., & Koca, I. (2008). Physico-chemical and antioxidant properties of cornelian cherry fruits (Cornus mas L.) grown in Turkey. Scientia Horticulturae, 116(4), 362-366. https://doi.org/10.1016/j.scienta.-2008.02.003 CR - Wrolstad, R.E. (1976). Color and pigment analyses in fruit products. In: Station Bulletin 624, Agricultural Experiment Station Oregon State, Corvallis, OR, pp. 1-17. CR - Yamamoto, L.Y., Koyama, R., Assis, A.M., Borges, W.F., Oliveira, I.R., & Roberto, S.R. (2015). Color of berry and juice of 'Isabel' grape treated with abscisic acid in different ripening stages. Pesquisa Agropecuária Brasileira 50(12), 1160-1167. https://doi.org/10.1590/S0100204X-2015001200005 CR - Zhang, Y., Xue, K., Zhao, E.Y, Li, Y., Yao, L., Yang, X., & Xie, X. (2013). Determination of oleanolic acid and ursolic acid in Chinese medicinal plants using HPLC with PAH polymeric C18. Pharmacognosy Magazine, 9(36), 19-24. https://doi.org/10.4103/0973-1296.117853 UR - https://doi.org/10.31594/commagene.1016721 L1 - https://dergipark.org.tr/tr/download/article-file/2054319 ER -