TY - JOUR T1 - KİTLE FONLAMASINDAKİ PROJE METİN İÇERİKLERİNİN LSTM İLE ANALİZİ TT - ANALYSIS OF PROJECT TEXT CONTENTS WITH LSTM IN CROWDFUNDING AU - Kılınç, Murat AU - Aydın, Can AU - Tarhan, Çiğdem PY - 2022 DA - March Y2 - 2022 DO - 10.54452/jrb.1021694 JF - Journal of Research in Business JO - JRB PB - Marmara Üniversitesi WT - DergiPark SN - 2630-6255 SP - 48 EP - 59 VL - 7 IS - IMISC2021 Special Issue LA - tr AB - Kitle fonlaması (KF), topluluklardan gelen fonlamalarla projelerin finanse edilerek hayata geçmesini sağlayan web platformlarıdır. Dünya çapında her yıl bu platformlar kullanılarak binlerce iş fikri çeşitli öznitelikler ile başarılı bir şekilde gerçekleştirilmektedir. KF başarısına en çok etki eden özniteliklerden birisi de projelerdeki metin içerikleridir. Bu doğrultuda yapılan araştırmada, Türkiye’de faaliyet gösteren KF platformlarındaki özetleyici proje metinleri veri kazıma teknikleriyle toplanmış ve analize hazır hale getirilmiştir. Sonrasında ise KF projelerinin metin içerikleri bir RNN modeli olan LSTM kullanılarak başarı etiketleriyle sınıflandırılmış ve değerlendirme metrikleriyle analiz edilmiştir. Parametre seçimleriyle birlikte kurulan modelin doğruluk oranı %96.18’dir. Çalışmanın sonuçları, KF projeleri için hazırlanan metinlerin karar destek sistemlerinde test edilebileceğini göstermektedir. KW - kitle Fonlaması KW - metin madenciliği KW - sinir ağları KW - derin öğrenme KW - uzun-kısa süreli bellek N2 - Crowdfunding (CF) are web platforms that enable projects to be funded and implemented with funding from communities. Thousands of business ideas are successfully implemented with various attributes by using these platforms worldwide every year. One of the attributes that most affect the success of CF is the text content in the projects. In the research conducted in this direction, the summary project texts in the CF platforms operating in Turkey were collected by data scraping techniques and made ready for analysis. Afterwards, the text contents of the CF projects were classified with success tags using an RNN model, LSTM, and analyzed with evaluation metrics. The accuracy rate of the model established with the parameter selections is 96.18%. The results of the study show that the texts prepared for CF projects can be tested in decision support systems. CR - Akça, M. F. (2021). LSTM Nedir? Nasıl Çalışır? Erişim Tarihi: 12.07.2021, Erişim Linki: https://mfakca.medium.com/lstm-nedir-nasıl-çalışır-326866fd8869 CR - Akdoğan, A. (2020). Uzun Kısa Vadeli Hafıza Ağları. Erişim Tarihi: 18.07.2021, Erişim Linki: https://medium.com/bilişim-hareketi/uzun-kısa-vadeli-hafıza-ağları-lstm-95cbe7d51b44 CR - Akköse, O. (2020). Uzun-Kısa Vadeli Bellek (LSTM). Erişim Tarihi: 12.07.2021, Erişim Linki: https://medium.com/deep-learning-turkiye/uzun-kısa-vadeli-bellek-lstm-b018c07174a3 CR - Basiri, M. E., Nemati, S., Abdar, M., Cambria, E., & Acharya, U. R. (2021). ABCDM: An Attention-based Bidirectional CNN-RNN Deep Model for sentiment analysis. Future Generation Computer Systems, 115, 279–294. https://doi.org/10.1016/j.future.2020.08.005 CR - Bilgin, M., & Şentürk, İ. F. (2017). Sentiment analysis on Twitter data with semi-supervised Doc2Vec. 2nd International Conference on Computer Science and Engineering, UBMK 2017, 661–666. https://doi.org/10.1109/UBMK.2017.8093492 CR - Borrero-Domínguez, C., Cordón-Lagares, E., & Hernández-Garrido, R. (2020). Analysis of success factors in crowdfunding projects based on rewards: A way to obtain financing for socially committed projects. Heliyon, 6(4). https://doi.org/10.1016/j.heliyon.2020.e03744 CR - Chakraborty, S., & Swinney, R. (2020). Signaling to the Crowd : Private Quality Information and Rewards-Based Crowfunding. Manufacturing & Service Operations Management, April, 0–15. CR - Elnagar, A., Al-Debsi, R., & Einea, O. (2020). Arabic text classification using deep learning models. Information Processing and Management, 57(1), 102121. https://doi.org/10.1016/j.ipm.2019.102121 CR - Farhoud, M., Shah, S., Stenholm, P., Kibler, E., Renko, M., & Terjesen, S. (2021). Social enterprise crowdfunding in an acute crisis. Journal of Business Venturing Insights, 15(November 2020), e00211. https://doi.org/10.1016/j.jbvi.2020.e00211 CR - Hu, J., Wang, X., Zhang, Y., Zhang, D., Zhang, M., & Xue, J. (2020). Time Series Prediction Method Based on Variant LSTM Recurrent Neural Network. Neural Processing Letters, 52(2), 1485–1500. https://doi.org/10.1007/s11063-020-10319-3 CR - Jang, B., Kim, M., Harerimana, G., Kang, S. U., & Kim, J. W. (2020). Bi-LSTM model to increase accuracy in text classification: Combining word2vec CNN and attention mechanism. Applied Sciences (Switzerland), 10(17). https://doi.org/10.3390/app10175841 CR - Kızrak, M. A., & Bolat, B. (2019). Uçak Motoru Sağlığı için Uzun-Kısa Süreli Bellek Yöntemi ile Öngörücü Bakım. Bilişim Teknolojileri Dergisi, 103–109. https://doi.org/10.17671/gazibtd.495730 CR - Li, Yan, Rakesh, V., & Reddy, C. K. (2016). Project success prediction in crowdfunding environments. WSDM 2016 - Proceedings of the 9th ACM International Conference on Web Search and Data Mining, 247–256. https://doi.org/10.1145/2835776.2835791 CR - Li, Yue, Wang, X., & Xu, P. (2018). Chinese text classification model based on deep learning. Future Internet, 10(11). https://doi.org/10.3390/fi10110113 CR - Lukkarinen, A., Teich, J. E., Wallenius, H., & Wallenius, J. (2016). Success drivers of online equity crowdfunding campaigns. Decision Support Systems, 87, 26–38. https://doi.org/10.1016/j.dss.2016.04.006 CR - Matsubara, N., Teramoto, A., Saito, K., & Fujita, H. (2019). Generation of Pseudo Chest X-ray Images from Computed Tomographic Images by Nonlinear Transformation and Bone Enhancement. Medical Imaging and Information Sciences, 36(3), 141–146. https://doi.org/10.11318/mii.36.141 CR - Moradi, M., & Badrinarayanan, V. (2021). The effects of brand prominence and narrative features on crowdfunding success for entrepreneurial aftermarket enterprises. Journal of Business Research, 124(November 2020), 286–298. https://doi.org/10.1016/j.jbusres.2020.12.002 CR - Nergiz, G., Safali, Y., Avaroglu, E., & Erdogan, S. (2019). Classification of Turkish News Content by Deep Learning Based LSTM Using Fasttext Model. 2019 International Conference on Artificial Intelligence and Data Processing Symposium, IDAP 2019, 1–6. https://doi.org/10.1109/IDAP.2019.8875949 CR - Ryoba, M. J., Qu, S., & Zhou, Y. (2020). Feature subset selection for predicting the success of crowdfunding project campaigns. Electronic Markets, 1–14. https://doi.org/10.1007/s12525-020-00398-4 CR - Seyyarer, E., Ayata, F., Uçkan, T., & Karcı, A. (2020). Derin Öğrenmede Kullanılan Optimizasyon Algoritmalarının Uygulanması Ve Kıyaslanması. Anatolian Journal of Computer Sciences, 2, 90–98. CR - Shneor, R., & Vik, A. A. (2020). Crowdfunding success: a systematic literature review 2010–2017. In Baltic Journal of Management (Vol. 15, Issue 2, pp. 149–182). Emerald Group Publishing Ltd. https://doi.org/10.1108/BJM-04-2019-0148 CR - Zhou, C., Sun, C., Liu, Z., & Lau, F. C. M. (2015). A C-LSTM Neural Network for Text Classification. http://arxiv.org/abs/1511.08630 UR - https://doi.org/10.54452/jrb.1021694 L1 - https://dergipark.org.tr/tr/download/article-file/2074072 ER -