TY - JOUR T1 - An Approach Towards the Least-Squares Method for Simple Linear Regression AU - Tali, Hasan Halit AU - Çelti, Ceren PY - 2022 DA - September Y2 - 2022 DO - 10.54569/aair.1032607 JF - Advances in Artificial Intelligence Research JO - Adv. Artif. Intell. Res. PB - Osman ÖZKARACA WT - DergiPark SN - 2757-7422 SP - 38 EP - 44 VL - 2 IS - 2 LA - en AB - This study approaches the least-squares method for simple linear regression model. The least-squares line does not comply with the data when there are outliers that have deceptive effects on the results in the dataset. The study aims to develop a method for obtaining a line that complies more with the data when there are outliers in the dataset. KW - Applied mathematics KW - Machine learning KW - Simple linear regression KW - Least-Squares method KW - Outliers CR - Miller I, Miller M. Mathematical Statistics, Prenttice-Hall, Inc, 1999 (Çev. Ümit Şenesen John E. Freund’dan Matematiksel İstatistik, Literatür Yayıncılık. 2007). CR - Arslan İ. Python ile Veri Bilimi, Pusula Yayıncılık, Türkiye, 2020. CR - Rousseeuw PJ, Leroy AM. Robust regression and outlier detection. John Wiley & Sons, 1987. CR - Attaway S. Matlab A Practical Introduction to Programming and Problem Solving. 5th ed. Cambridge, USA, Butterwoth-Heinmann, 2019. CR - Kubat C. Matlab Yapay Zeka ve Mühendislik Uygulamaları. 5. Baskı, İstanbul, Türkiye, Abaküs Kitap Yayın, 2021. CR - Güneş A, Yıldız K. Matlab Matematik ve Grafik Programlama Dili. İstanbul, Türkiye, Türkmen Kitabevi, 1997. CR - Verardi V, Croux C. “Robust regression in Stata”. The Stata Journal, 9(3), 439-453, 2009. CR - Andersen R. Modern methods for robust regression (No. 152). Sage, 2008. UR - https://doi.org/10.54569/aair.1032607 L1 - https://dergipark.org.tr/tr/download/article-file/2115730 ER -