TY - JOUR T1 - Lojistik Servis Sağlayıcılarının Hizmet Kalitesi Boyutlarının SERVQUAL Temelli Best-Worst Yöntemi Kullanılarak Önceliklendirilmesi TT - Prioritizing the Service Quality Dimensions of Logistics Service Providers Using SERVQUAL-Based Best–Worst Method AU - Ayyıldız, Ertuğrul PY - 2022 DA - May Y2 - 2022 DO - 10.26650/JTL.2022.1038781 JF - Journal of Transportation and Logistics JO - JTL PB - İstanbul Üniversitesi WT - DergiPark SN - 2459-1718 SP - 117 EP - 135 VL - 7 IS - 1 LA - tr AB - Talebin her geçen gün arttığı lojistik sektöründe hizmet kalitesinin ölçülmesi kritik önem taşımaktadır. Firmaların pazarda rekabet edebilmeleri ve hizmet kalitelerini artırabilmeleri için müşterilerini iyi tanımaları ve beklentilerini doğru analiz ederek iyileştirmeler yapmaları gerekmektedir. Bu bağlamda SERVQUAL modeli hizmet kalitesi ölçümünde sıklıkla tercih edilen etkili araçlardan biridir. Ancak dünyayı etkisi altında pandemi, gelişen teknoloji trendlerin gelişimi ve dönüşümü gibi köklü değişimlerin etkileriyle geleneksel SERVQUAL modeli ile müşterilerin tüm beklentilerini sürece dahil etmek mümkün değildir. Bu yüzden bu çalışmada, SERVQUAL modeli lojistik servis sağlayıcılara yönelik beklentiler dikkate alınarak dört farklı boyutla genişletilmiş ve böylece daha kapsamlı bir çerçeve sunulmuştur. Daha sonra her bir boyutun önem derecesinin belirlemek için çok kriterli karar verme yaklaşımı benimsenmiş ve Best-Worst yöntemi kullanılarak boyutların önem dereceleri belirlenmiştir. Önerilen yöntemin tutarlılığını test etmek için karşılaştırmalı analiz yapılmıştır. Elde edilen sonuçlara göre en önemli hizmet kalitesi boyutu “yanıt verebilirlik” olarak belirlenmiştir. Ayrıca “yeterlik” ve “güvenilirlik” hizmet kalitesini artırmaya yönelik dikkate alınması gereken boyutlardandır. KW - Lojistik Servis Sağlayıcı KW - Hizmet Kalitesi KW - Servqual KW - Best-Worst N2 - The level of service quality for airline transportation, where demand is increasing daily, is vital and must be determined. For companies to compete in the market and increase their service quality, they must know their customers well, analyze their expectations correctly, and make improvements. In this context, the SERVQUAL model is one of the most preferred and effective tools for measuring service quality. However, customers’ expectations cannot be included in the process using the traditional SERVQUAL model, especially with the effects of radical changes, such as the pandemic, and the development and transformation of emerging technology trends. Therefore, this study extends the traditional SERVQUAL model with four novel dimensions considering the expectations for logistics service providers, thereby providing a more comprehensive framework. Subsequently, the importance level of each dimension is determined and modeled through a multicriteria decision-making problem. Furthermore, the importance levels of the dimensions are determined using the best–worst method. A comparative analysis is conducted to examine the consistency of the proposed method. The results reveal that the most important service quality dimension is “responsiveness.” In addition, the “competence” and “reliability” dimensions should be considered to increase service quality. CR - Aagja, J. P., & Garg, R. (2010). Measuring perceived service quality for public hospitals (PubHosQual) in the Indian context. International Journal of Pharmaceutical and Healthcare Marketing, 4(1), 60-83. https://doi.org/10.1108/17506121011036033 google scholar CR - Aktas, E., & Ulengin, F. (2005). Outsourcing logistics activities in Turkey. Journal of Enterprise Information Management, 18(3), 316-329. https://doi.org/10.1108/17410390510591996 google scholar CR - Asiamah, N., Frimpong Opuni, F., Aggrey, M., & Adu-Gyamfi, K. (2021). ADAPTED SERVQUAL: A Health Service Quality Scale Incorporating Indicators of Sanitation and Hygiene. Quality Management in Health Care. https://doi.org/10.1097/QMH.0000000000000269 google scholar CR - Awasthi, A., Chauhan, S. S., Omrani, H., & Panahi, A. (2011). A hybrid approach based on SERVQUAL and fuzzy TOPSIS for evaluating transportation service quality. Computers and Industrial Engineering, 61(3), 637-646. https://doi.org/10.1016/j.cie.2011.04.019 google scholar CR - Ayyildiz, E., & Taskin Gumus, A. (2021). Interval-valued Pythagorean fuzzy AHP method-based supply chain performance evaluation by a new extension of SCOR model: SCOR 4.0. Complex & Intelligent Systems, 7(1), 559-576. https://doi.org/10.1007/s40747-020-00221-9 google scholar CR - Ayyildiz, E., Yildiz, A., Taskin Gumus, A., & Ozkan, C. (2021). An Integrated Methodology Using Extended Swara and Dea for the Performance Analysis of Wastewater Treatment Plants: Turkey Case. Environmental Management, 67(3), 449-467. https://doi.org/10.1007/s00267-020-01381-7 google scholar CR - Baber, H. (2019). E-SERVQUAL and its impact on the performance of Islamic Banks in Malaysia from the customer’s perspective. Journal of Asian Finance, Economics and Business, 6(1), 169-175. https://doi. org/10.13106/JAFEB.2019 google scholar CR - Baki, B., Sahin Basfirinci, C., Murat ar, I., & Cilingir, Z. (2009). An application of integrating SERVQUAL and Kano’s model into QFD for logistics services:A case study from Turkey. Asia Pacific Journal of Marketing and Logistics, 21(1), 106-126. https://doi.org/10.1108/13555850910926272 google scholar CR - Chen, D., Faibil, D., & Agyemang, M. (2020). Evaluating critical barriers and pathways to implementation of e-waste formalization management systems in Ghana: a hybrid BWM and fuzzy TOPSIS approach. Environmental Science and Pollution Research, 27(35), 44561-44584. https://doi.org/10.1007/s11356-020-10360-8 google scholar CR - Del Castillo, J. M., & Benitez, F. G. (2012). A Methodology for Modeling and Identifying Users Satisfaction Issues in Public Transport Systems Based on Users Surveys. Procedia - Social and Behavioral Sciences, 54, 1104-1114. https://doi.org/10.1016/j.sbspro.2012.09.825 google scholar CR - Farooq, M. S., Salam, M., Fayolle, A., Jaafar, N., & Ayupp, K. (2018). Impact of service quality on customer satisfaction in Malaysia airlines: A PLS-SEM approach. Journal of Air Transport Management, 67, 169-180. https://doi.org/10.1016/J.JAIRTRAMAN.2017.12.008 google scholar CR - Fei, L., Lu, J., & Feng, Y. (2020). An extended best-worst multi-criteria decision-making method by belief functions and its applications in hospital service evaluation. Computers and Industrial Engineering, 142. https://doi.org/10.1016/J.CIE.2020.106355 google scholar CR - Gupta, H. (2018). Evaluating service quality of airline industry using hybrid best worst method and VIKOR. Journal of Air Transport Management, 68, 35-47. https://doi.org/10.1016/j.jairtraman.2017.06.001 google scholar CR - Ilbahar, E., Cebi, S., & Kahraman, C. (2019, August 1). A state-of-the-art review on multi-attribute renewable energy decision making. Energy Strategy Reviews, Vol. 25, pp. 18-33. Elsevier Ltd. https:// doi.org/10.1016/j.esr.2019.04.014 google scholar CR - Johns, N. (1992). Quality Management in the Hospitality Industry: Part 1. Definition and Specification. International Journal of Contemporary Hospitality Management, 4(3), 14-20. https://doi. org/10.1108/09596119210014219 google scholar CR - Kadlubek, M., & Grabara, J. (2015). Customers’ expectations and experiences within chosen aspects of logistic customer service quality. International Journal for Quality Research, 9(2), 265-278. google scholar CR - Kang, D., Jang, W., & Park, Y. (2016). Evaluation of e-commerce websites using fuzzy hierarchical TOPSIS based on E-S-QUAL. Applied Soft Computing Journal, 42, 53-65. https://doi.org/10.1016/j. asoc.2016.01.017 google scholar CR - Kersuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management, 11(2). google scholar CR - Kheybari, S., Kazemi, M., & Rezaei, J. (2019). Bioethanol facility location selection using best-worst method. Applied Energy, 242, 612-623. https://doi.Org/10.1016/j.apenergy.2019.03.054 google scholar CR - König, C., Caldwell, N. D., & Ghadge, A. (2019). Service provider boundaries in competitive markets: the case of the logistics industry. International Journal of Production Research, 57(18), 5624-5639. https:// doi.org/10.1080/00207543.2018.1535203 google scholar CR - Kyriakopoulos, G. (2011). The role of quality management for effective implementation of customer satisfaction, customer consultation and self-assessment, within service quality schemes: A review. African Journal of Business Management, 5(12), 4901-4915. https://doi.org/10.5897/AJBM10.1584 google scholar CR - Liao, H., Mi, X., Yu, Q., & Luo, L. (2019). Hospital performance evaluation by a hesitant fuzzy linguistic best worst method with inconsistency repairing. Journal of Cleaner Production, 232, 657-671. https:// doi.org/10.1016/j.jclepro.2019.05.308 google scholar CR - Limsomkiat, N., & Vanichchinchai, A. (2019). An analysis of logistics service quality and performance. PervasiveHealth: Pervasive Computing Technologies for Healthcare, 53-56. https://doi. org/10.1145/3364335.3364353 google scholar CR - Maghsoodi, A. I., Saghaei, A., & Hafezalkotob, A. (2019). Service quality measurement model integrating an extended SERVQUAL model and a hybrid decision support system. European Research on Management and Business Economics, 25(3), 151-164. https://doi.org/10.1016/J.IEDEEN.2019.04.004 google scholar CR - Moslem, S., Alkharabsheh, A., Ismael, K., & Duleba, S. (2020). An Integrated Decision Support Model for Evaluating Public Transport Quality. Applied Sciences, 10(12), 4158. https://doi.org/10.3390/app10124158 google scholar CR - Moslem, S., Campisi, T., Szmelter-Jarosz, A., Duleba, S., Nahiduzzaman, K. M., & Tesoriere, G. (2020). Best-worst method for modelling mobility choice after COVID-19: Evidence from Italy. Sustainability (Switzerland), 12(17), 6824. https://doi.org/10.3390/SU12176824 google scholar CR - Mou, Q., Xu, Z., & Liao, H. (2016). An intuitionistic fuzzy multiplicative best-worst method for multi-criteria group decision making. Information Sciences, 374, 224-239. https://doi.org/10.1016/j.ins.2016.08.074 google scholar CR - Mulat, G. W. (2017). The Effects of Service Quality on Customer Satisfaction: A Study among Private Banks in Mekelle Town. European Journal of Business and Management Www.Iiste.Org ISSN, 9(13), 72-79. google scholar CR - Nie, R. xin, Tian, Z. peng, Kwai Sang, C., & Wang, J. qiang. (2020). Implementing healthcare service quality enhancement using a cloud-support QFD model integrated with TODIM method and linguistic distribution assessments. Journal of the Operational Research Society. https://doi.org/10.1080/01605 682.2020.1824554 google scholar CR - Omrani, H., Alizadeh, A., & Amini, M. (2020). A new approach based on BWM and MULTIMOORA methods for calculating semi-human development index: An application for provinces of Iran. Socio-Economic Planning Sciences, 70, 100689. https://doi.org/10.1016/j.seps.2019.02.004 google scholar CR - Pakdil, F., & Aydin, Ö. (2007). Expectations and perceptions in airline services: An analysis using weighted SERVQUAL scores. Journal of Air Transport Management, 13(4), 229-237. https://doi.org/10.1016/J. JAIRTRAMAN.2007.04.001 google scholar CR - Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1985). A Conceptual Model of Service Quality and Its Implications for Future Research. Journal of Marketing, 49(4), 41. https://doi.org/10.2307/1251430 google scholar CR - Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1988). SERVQUAL: A multiple-item scale for measuring consumer perceptions of service quality. Journal of Retailing, 64(1), 12-40. google scholar CR - Pawitra, T. A., & Tan, K. C. (2001). Integrating Servqual and Kano’s model into QFD for service excellence development. Managing Service Quality: An International Journal, 11(6), 418- 430. google scholar CR - Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega (United Kingdom), 53, 49-57. https://doi.org/10.1016/j.omega.2014.11.009 google scholar CR - Rezaei, J., Kothadiya, O., Tavasszy, L., & Kroesen, M. (2018). Quality assessment of airline baggage handling systems using SERVQUAL and BWM. Tourism Management, 66, 85-93. https://doi.org/10.1016/j. tourman.2017.11.009 google scholar CR - Sivakumar, G., Almehdawe, E., & Kabir, G. (2022). Developing a Decision-Making Framework to Improve Healthcare Service Quality during a Pandemic. Applied System Innovation, 5(1), 3. https://doi.org/10.3390/ ASI5010003 google scholar CR - Stefano, N. M., Casarotto Filho, N., Barichello, R., & Sohn, A. P. (2015). A fuzzy SERVQUAL based method for evaluated of service quality in the hotel industry. Procedia CIRP, 30, 433-438. Elsevier B.V https:// doi.org/10.1016/j.procir.2015.02.140 google scholar CR - Suria, H., Ahmad, F. M., & Siti, N. S. (2019). Bus service indicator: The different sight of performance index development. Journal of Physics: Conference Series, 1349(1). https://doi.org/10.1088/1742-6596/1349/1/012049 google scholar CR - Tumsekcali, E., Ayyildiz, E., & Taskin, A. (2021). Interval valued intuitionistic fuzzy AHP-WASPAS based public transportation service quality evaluation by a new extension of SERVQUAL Model: P-SERVQUAL 4.0. Expert Systems with Applications, 186, 115757. https://doi.org/10.1016/J.ESWA.2021.115757 google scholar CR - Wetzel, P., & Hofmann, E. (2020). Toward a Multi-Sided Model of Service Quality for Logistics Service Providers. Administrative Sciences 2020, Vol. 10, Page 79, 10(4), 79. https://doi.org/10.3390/ ADMSCI10040079 google scholar CR - Yalcin Kavus, B., Gulum Tas, P., Ayyildiz, E., & Taskin, A. (2022). A three-level framework to evaluate airline service quality based on interval valued neutrosophic AHP considering the new dimensions. Journal of Air Transport Management, 99, 102179. https://doi.org/10.1016/J.JAIRTRAMAN.2021.102179 google scholar UR - https://doi.org/10.26650/JTL.2022.1038781 L1 - https://dergipark.org.tr/tr/download/article-file/2140937 ER -