TY - JOUR T1 - Applications of the Carathéodory’s Inequality for Driving Point Impedance Functions TT - Süren Nokta Empedans Fonksiyonları için Carathéodory Eşitsizliği’nin Uygulamaları AU - Düzenli, Timur AU - Örnek, Bülent Nafi PY - 2021 DA - December DO - 10.31590/ejosat.1040073 JF - Avrupa Bilim ve Teknoloji Dergisi JO - EJOSAT PB - Osman SAĞDIÇ WT - DergiPark SN - 2148-2683 SP - 326 EP - 331 IS - 32 LA - en AB - In this study, the Carathéodory’s Inequality, which is a highly popular topic of complex analysis theory, has been applied to electrical engineering to obtain novel driving point impedance functions. In electrical engineering, driving point impedance functions correspond to positive real functions and they are used for representation of the spectral characteristics of a particular circuit. Accordingly, boundary version of the Carathéodory’s inequality has been considered here assuming that the driving point empedance function, Z(s) has a fractional function structure with 0 KW - Driving point impedance function KW - Carathéodory’s Inequality KW - Circuit KW - Filter N2 - Bu çalışmada, kompleks analiz teorisinde oldukça popular bir konu olan Carathéodory eşitsizliği, yeni süren nokta empedans fonksiyonları elde etmek için elektrik mühendisliğine uygulanmıştır. Elektrik mühendisliğinde süren nokta empedans fonksiyonları, pozitif reel fonksiyonlara karşılık gelmekte ve belli bir devrenin spektral özelliklerini temsil etmek için kullanılmaktadırlar. Buna göre, burada Carathéodory eşitsizliğinin bir sınır versiyonu, kesirli fonksiyon yapıdaki süren nokta empedans fonksiyonu Z(s) için, Z(s)’nin 0 CR - Akkaya, R., Endiz, M. S. (2020). Yarı empedans kaynaklı i̇nverter Devresinin Performans analizi. European Journal of Science and Technology (EJOSAT), Special Issue, 13–20. https://doi.org/10.31590/ejosat.801852 CR - Örnek, B. N., Düzenli, T. (2018). On boundary analysis for derivative of driving point impedance functions and its circuit applications. IET Circuits, Devices & Systems, 13(2), 145–152. https://doi.org/10.1049/iet-cds.2018.5123 CR - Örnek, B. N., Düzenli, T. (2018). Boundary Analysis for the derivative of driving point impedance functions. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(9), 1149–1153. https://doi.org/10.1109/tcsii.2018.2809539 CR - Tavazoei, M. S. (2018). Passively realisable impedance functions by using two fractional elements and some resistors. IET Circuits, Devices & Systems, 12(3), 280–285. https://doi.org/10.1049/iet-cds.2017.0342 CR - Mukhtar, F., Kuznetsov, Y., Russer, P. (2011). Network modelling with Brune's Synthesis. Advances in Radio Science, 9, 91–94. https://doi.org/10.5194/ars-9-91-2011 CR - Wunsch, A. D., Sheng-Pin Hu. (1996). A closed-form expression for the driving-point impedance of the small inverted L Antenna. IEEE Transactions on Antennas and Propagation, 44(2), 236–242. https://doi.org/10.1109/8.481653 CR - Reza, F. M. (1962). A bound for the derivative of positive real functions. SIAM Review, 4(1), 40–42. https://doi.org/10.1137/1004005 CR - Richards, P. I. (1947). A special class of functions with positive real part in a half-plane. Duke Mathematical Journal, 14(3), 777–789. https://doi.org/10.1215/s0012-7094-47-01461-0 CR - Dineen, S. (2016). Schwarz lemma. Dover Publications Inc. CR - Kresin, G., Maz'Ya, V., Shaposhnikova, T. (2007). Sharp real-part theorems: A unified approach. Springer. CR - Örnek, B. N. (2015). Carathéodory's inequality on the boundary. The Pure and Applied Mathematics, 22(2), 169–178. https://doi.org/10.7468/jksmeb.2015.22.2.169 Ornek, B. N. (2016). The caratheodory inequality on the boundary for holomorphic functions in the unit disc. Journal of Mathematical Physics, Analysis, Geometry, 12(4), 287–301. https://doi.org/10.15407/mag12.04.287 CR - Osserman, R. (2000). A Sharp schwarz inequality on the boundary. Proceedings of the American Mathematical Society, 128(12), 3513–3517. https://doi.org/10.1090/s0002-9939-00-05463-0 CR - Mercer, P. R. (1997). Sharpened versions of the Schwarz lemma. Journal of Mathematical Analysis and Applications, 205(2), 508–511. https://doi.org/10.1006/jmaa.1997.5217 CR - Mercer, P. R. (2018). Boundary Schwarz inequalities arising from Rogosinski's lemma. Journal of Classical Analysis, (2), 93–97. https://doi.org/10.7153/jca-2018-12-08 CR - Mercer, P. R. (2018). An improved Schwarz lemma at the boundary. Open Mathematics, 16(1), 1140–1144. https://doi.org/10.1515/math-2018-0096 CR - Dubinin, V. N. (2004). The Schwarz inequality on the boundary for functions regular in the disk. Journal of Mathematical Sciences, 122(6), 3623–3629. https://doi.org/10.1023/b:joth.0000035237.43977.39 CR - Mateljevic, M. (2018). ‘Rigidity of holomorphic mappings & Schwarz and Jack lemma’, https://doi.org/10.13140/RG.2.2.34140.90249. CR - Azeroǧlu, T. A., Örnek, B. N. (2012). A refined Schwarz inequality on the boundary. Complex Variables and Elliptic Equations, 58(4), 571–577. https://doi.org/10.1080/17476933.2012.718338 CR - Harold P. Boas. (2010). Julius and julia: Mastering the art of the schwarz lemma. The American Mathematical Monthly, 117(9), 770-785. https://doi.org/10.4169/000298910x521643 CR - Örnek, B. N., Düzenli, T. (2021). Rogosinski Lemması ile ilgili Süren Nokta Empedans Fonksiyonları için Carathéodory Eşitsizliği. Dicle Üniversitesi Mühendislik Fakültesi (DÜMF) Mühendislik Dergisi, 12(1), 61-68. https://doi.org/10.24012/dumf.860229 CR - Örnek, B. N., Düzenli, T. (2021). Sharpened forms for driving point impedance functions at boundary of right half plane. Mühendislik Bilimleri ve Tasarım Dergisi, 9(4), 1093-1105. https://doi.org/10.21923/jesd.945359 UR - https://doi.org/10.31590/ejosat.1040073 L1 - https://dergipark.org.tr/tr/download/article-file/2146192 ER -