TY - JOUR T1 - Genelleştirilmiş Kuantum Işınlama Protokolü TT - Generalized Quantum Teleportation Protocol AU - Kaya, Emir Oğuz PY - 2023 DA - January DO - 10.21205/deufmd.2023257306 JF - Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi JO - DEUFMD PB - Dokuz Eylül Üniversitesi WT - DergiPark SN - 1302-9304 SP - 69 EP - 80 VL - 25 IS - 73 LA - tr AB - Bu çalışma kapsamında literatürde var olan tek kubit(kuantum bit) ışınlanma/telenakil (quantum teleportation) protokolünün çok kubit sistemlere genellenmesi incelenmiştir. Ardından, birden fazla hedefe telenakil olanakları tartışılarak, buna dair bir protokol önerilmiştir. Geliştirilen teorik çerçeve kapsamında, kubitler üzerinde değişiklik yapan kuantum mantık kapılarının da genellenmesi tartışılmıştır. Söz konusu kuantum mantık kapılarının genel versiyonları oluşturulmuş olup, literatürdeki özel durumlar için çalıştıkları gösterilmiştir. Işınlanmanın çok kubit-çok hedefe genellenmesi sonucu kurulan teorik çerçevede oluşan denklemlerin bir örüntü içerdiği belirlenmiş olup, bu örüntü aracılığı ile karmaşık tensör çarpımları ile tek tek uğraşmaksızın da protokolün gerçekleştirilebileceği bir yol önerilmiştir. Çalışma kapsamında çok kubit - tek hedef, çok kubit – çok hedef protokollerine yönelik Python bilgisayar programları oluşturulmuştur. Oluşturulan programların, sunulan teorik çerçevenin ön gördüğü sonuçları başarılı bir şekilde ürettiği gözlenmiştir. Bu programlar aracılığı ile, uzun ve hata yapma olasılığı yüksek matematiksel işlemlerin kısa sürede ve hatasız yapılabilmesinin olanağı yaratılmıştır. Oluşturulan program sonuçları aynı zamanda, yukarıda bahsedilen örüntünün varlığını kanıtlamaktadır. KW - Kuantum Işınlaması KW - Kuantum Bit KW - Kuantum Mantık Kapısı KW - Quantum Teleportation KW - Qubit KW - Quantum Logic Gate N2 - Within the scope of this study, generalization of the single qubit (quantum bit) teleportation protocol to multi-qubit systems has been examined. Then, the possibilities of teleporting to more than one target were discussed and a protocol for this was proposed. Within the scope of the developed theoretical framework, the generalization of quantum logic gates that modify qubits is also discussed. General versions of these quantum logic gates have been created and they have been shown to work for special cases in the literature. It has been determined that the equations formed in the theoretical framework established as a result of the generalization of the teleportation to many qubits and many targets, contain a pattern, and a way to carry out the protocol without dealing with complex tensor products one by one is proposed through this pattern.Within the scope of the study, Python computer programs were created for multi-qubit - single target, multi-qubit - multi-target protocols. It has been observed that the created programs successfully produce the results predicted by the theoretical framework presented. Through these programs, it is possible to perform long and error-free mathematical operations in a short time. The generated program results also prove the existence of the above-mentioned pattern. CR - 1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.,1993,"Teleporting an unknown quantum state via dual classic and Einstein–Podolsky–Rosen channels", Phys. Rev. Lett. 70, 1895–1899 CR - 2. Ikram, M., Zhu, S.Y., Zubairy, M.S.,2000, "Quantum teleportation of an entangled state" Phys. Rev. A. 62, 022307 CR - 3. Rigolin, G. ,2005, "Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement", Phys. Rev. A. 71, 032303 CR - 4. Yang, C.P., Guo, G.C. ,2000, " Multiparticle generalization of teleportation" Chin. Phys. Lett. 17, 162–164 CR - 5. Lee, J., Min, H., Oh, S.D. ,2002, " Multipartite entanglement for entanglement teleportation", Phys. Rev. A. 66,052318 CR - 6. Cheung, C.Y., Zhang, Z.J. ,2009, " Criterion for faithful teleportation with an arbitrary multiparticle channel", Phys.Rev. A. 80, 022327 CR - 7. Zhao,M.J., 2011," Faithful teleportation with arbitrary pure or mixed resource states" J. Phys. AMath. Theor.44, 215302 CR - 8. Praksh, H., Verma, V.,2012,"Minimum assured fidelity and minimum average fidelity in quantum teleportation ofsingle qubit using non-maximally entangled states", Quantum Inf. Process. 11, 1951–1959 CR - 9. Meng, Q., Long, X.S., Yue, Z.X.,2012," Standard teleportation of one-qubit state and partial teleportation of twoqubitstate via X-state" Commun. Theor. Phys. 57, 201–204 CR - 10. Verma, V., Prakash, H. ,2016," Standard quantum teleportation and controlled quantum teleportation of arbitrary N-qubit information state" Int. J. Theo. Phy. 55, 2061–2070 CR - 11. Cai, T., Jiang, M.,2018," Improving the teleportation scheme of three-qubit state with a four-qubit Quantum Channe", Int. J. Theor. Phys. 57, 131–137 CR - 12. Karlson, A., Bourennane, M.,1998," Quantum teleportation using three-particle entanglement" Phys. Rev. A. 58, 4394–4400 CR - 13. Yang, C.P., Chu, S.I., Han, S. ,2007," Efficient many-party controlled teleportation of multiqubit quantum information via entanglement" Phys. Rev. A. 70, 022329 CR - 14. Man, Z.X., Xia, Y.J., An, N.B. ,2007," Genuine multiqubit entanglement and controlled teleportation" Phys. Rev. A. 75, 052306 CR - 15. Yan, F., Wang, D.,2003," Probabilistic and controlled teleportation of unknown quantum states", Phys. Lett. A. 316, 297–303 CR - 16. Dong, J., Teng, J.F. ,2008," Controlled teleportation of an arbitrary n-qudit state using non-maximally entangled GHZ states", Eur. Phys. J. D. 49, 129–134 CR - 17. Nie, Y.Y., Hong, Z.H., Huang, Y.B., Yi, X.J., Li, S.S.,2009," Non-maximally entangled controlled teleportation usingfourparticleskümestates", Int. J. Theor. Phys. 48, 1485–1490 CR - 18. Shi, R.H., Huang, L.S., Yang, W., Zhong, H.,2011," Controlled quantum perfect teleportation of multiple arbitrary multi-qubit states", Sci. China. 54, 2208–2216 CR - 19. Li, Y.H., Li, X.L., Nie, L.P., Sang, M.H.,2016," Quantum teleportation of three and four-qubit stateusingmultiqubitkümestates", Int. J. Theor. Phys. 55, 1820–1823 CR - 20. Li, Y.H., Sang, M.H., Wang, X.P., Nie, Y.Y.,2016," Quantum teleportation of a four-qubit state byusingsix-qubitkümestate", Int. J. Theor. Phys. 55, 3547–3550 CR - 21. Cao, L., Xue, S., Jiang,M.,2020," Teleportation of an unknownfour-qubitkümestatebased on kümestateswith minimum resource", IEEE Access. 8, 81447–81457 CR - 22. Li, M., Zhao, N., Chen, N., Zhu, C.H., Pei, C.X. ,2017," Quantum teleportation of five-qubit state", Int. J. Theor. Phys. 56, 2710–2715 CR - 23. Yang, Y., Jiang, M., Zhou, L.L. ,2018," Improving the teleportation scheme of five-qubit state with a seven-qubit Quantum Channel", Int. J. Theor. Phys. 57, 3485–3491 CR - 24. Choudhury, B.S., Dhara, A., Samanta, S. ,2017," Teleportation of five-qubit state using six-qubit state", Phys. Part. Nucl. Lett. 14, 644–646 CR - 25. Bouwmeester, D., Pan, J.W., Mattle, K., Ebil, M., Weinfurter, H., Zeilinger, A., 1997," Experimental quantum teleportation", Nature (London). 390, 575–579 CR - 26. Boschi, D., Branca, S., Martini, F.D., Hardy, L., Popescu, S. ,1998," Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels", Phys. Rev. Lett. 80, 1121–1125 CR - 27. Furusawa, A., Sorensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S. ,1998," Unconditional quantum teleportation", Science. 282, 706–709 CR - 28. Lee, H.W. ,2001," Total teleportation of an entangled state", Phys. Rev. A. 64, 014302 CR - 29. Verma, V., Singh, N., Singh, R.S., 2021, "Improvement on Quantum Teleportation of Three and Four Qubit States Using Multi-QubitKümeStates", Int. J. Theor. Phys. 60, 3973-3981 CR - 30. Li, M., Zhao, N., Chen, N., Zhu, C.H., Pei, C.X. ,2018," Quantum teleportation of eight-qubit stateviasix-qubitkümestate", Int. J. Theor. Phys. 57, 516-522 CR - 31. Sang, M.H.,2016," Bidirectional quantum teleportation byusingfive-qubitkümestate", Int. J. Theor. Phys. 55(3), 1333–1335 CR - 32. Li, Y.H., Jin, X.M.,2016," Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments", Quantum. Inf. Process. 15(2), 929–945 CR - 33. Fatahi, N., Naseri, M., 2021, "Quantum teleportation of a N-qubit entangled state by using a (N+1)-qubitkümestate", Quantum. Inf. Process. 20, 367 CR - 34. Jin, X.M., Ren, J.G., Yang, B., Yi, Z.H., Zhou, F., Xu, X.F., Wang, S.K., Yang, D., Hu, Y.F., Jiang, S.,Yang, T., Yin, H., Chen, K., Peng, C.Z., Pan, J.W. ,2010, "Experimental free-space quantum teleportation", Nat. Photonics 4, 376–381 CR - 35. Metcalf, B.J., Spring, J.B., Humphreys, P.C., Thomas-Peter, N., Barbieri, M., Kolthammer, W.S., Jin,X.M., Langford, N.K., Kundys, D., Gates, J.C., Smith, B.J., Smith, P.G.R., Walmsley, I.A.,2014,"Quantum teleportation on a photonic chip", Nat. Photonics 8, 770–774 CR - 36. Duan, Y., Zha, X., Sun, X., Xia, J., 2014, "Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state", Int. J. Theor. Phys. 53, 2697-2707 CR - 37. Cohn ,J.H.E., 1965,"Hadamard matrices and some generalisations", Amer. Math. Monthly, 72:515–518 CR - 38. Hedayat, A., Wallis, W.D.,1978, "Hadamard matrices and their applicalions", The. Annals. of. Statistics. 6, 1184-1238 CR - 39. Rakotonirina, C., Rasamizafy, S., 2016, "3x3 Kronecker pauli matrices", A Peer Reviewed International Research Journal. 6, 127-134 CR - 40. Rakotonirina, C., 2018,"Rectangle gell-mann matrices ", Institut Sup´erieur de Technologie d’AntananarivoIST-T, BP 8122 CR - 41. Yang, C. P., Chu, S. I., Han, S., 2005, "Efficient many-party controlled teleportation of multi-qubit quantum informationviaentanglement", arXiv:quant-ph/0402138v2 CR - 42. Bolokian, M.,Housmand, M., Sadeghizadeh, M. S., Parvaneh, M., 2020, "Multi-Party Quantum TeleportationwithSelectiveReceiver", Int. J. Theor. Phys. 60, 828-837 UR - https://doi.org/10.21205/deufmd.2023257306 L1 - http://dergipark.org.tr/tr/download/article-file/2292728 ER -