TY - JOUR T1 - Döngüsel Ekonomi Kapsamında Evsel Atıksu Arıtma Tesislerinde Fosfor Geri Kazanımı Uygulamalarına Genel Bir Bakış AU - Cengiz, Ali İzzet AU - Güven, Hüseyin AU - Erşahin, Mustafa Evren AU - Özgün, Hale AU - Öztürk, İzzet PY - 2022 DA - November JF - Çevre İklim ve Sürdürülebilirlik JO - İTÜ Dergisi-E PB - İstanbul Teknik Üniversitesi WT - DergiPark SN - 2822-4639 SP - 117 EP - 132 VL - 23 IS - 2 LA - tr AB - Güncel projeksiyon çalışmaları, insanlığın temel ihtiyacı olan ve büyük oranda tarım sektörü için gübre üretiminde kullanılan fosfora ait doğal kaynakların önümüzdeki birkaç yüzyıl içerisinde tükenebileceğini göstermektedir. Pek çok ülke fosfor ihtiyacını ithal yol ile karşılamaktadır ve tarımsal üretiminin devamlılığı için dışa bağımlıdır. Dolayısıyla ülkeler özellikle son yıllarda kendilerini bekleyen fosfor krizinin önlenmesine yönelik çeşitli adımlar atmaktadır. Günümüzde, döngüsel ekonomi, kaynak geri kazanımı odaklı atıksu arıtma tesisi (AAT) gibi konseptler, doğal kaynakların sürdürülebilir yönetiminin bir zaruret haline gelmesiyle önem kazanmıştır. Atıksular önemli miktarda fosfor ihtiva etmektedir. Bu yüzden AAT’lerde fosfor geri kazanımı sağlanarak doğal fosfor rezervlerinin sürdürülebilir yönetimine katkı sunulabilir. AAT’lerde geri kazanılan fosforlu nihai ürün, içerdiği toksik madde ve ağır metaller çevre ve insan sağlığı açısından risk teşkil etmediği müddetçe, tarım sektöründe gübre olarak değerlendirilebilir. Böylece birçok ülkenin ulusal hedefinde yer alan yeşil tarıma geçiş sürecine de katkı sunulmuş olur. AAT’lerde çamur, çamur külü, yan akımlar, arıtma çıkış suyu ve kaynağında ayrı toplanması durumunda idrar, yüksek fosfor geri kazanımı potansiyeli nedeniyle literatürde birçok farklı laboratuvar, pilot veya tam ölçekli çalışma kapsamında değerlendirilmiştir. Bu çalışmada belirtilen akımlarda fosfor geri kazanımına dair yapılan araştırmalar incelenerek derlenmiş ve kapsamlı bir değerlendirme yapılmıştır. KW - Atıksu arıtma tesisi KW - döngüsel ekonomi KW - fosfor KW - geri kazanım KW - gübre. CR - Agronomist, G. (1998). Phosphorus availability in the 21st century Management of a non- renewable resource. Cl, 1–13. CR - Amann, A., Zoboli, O., Krampe, J., Rechberger, H., Zessner, M., & Egle, L. (2018). Environmental impacts of phosphorus recovery from municipal wastewater. Resources, Conservation and Recycling, 130(December 2017), 127–139. CR - Atienza-Martìnez, M., Gea, G., Arauzo, J., Kersten, S., Koostra, M. (2014): Phosphorus recovery from sewage sludge ash. In: Biomass and Bioenergy 65 (42-50) CR - Bashar, R., Gungor, K., Karthikeyan, K. G., & Barak, P. (2018). Cost effectiveness of phosphorus removal processes in municipal wastewater treatment. Chemosphere, 197, 280–290. CR - Beler-Baykal, B., Allar, A. D., & Bayram, S. (2011). Nitrogen recovery from source-separated human urine using clinoptilolite and preliminary results of its use as fertilizer. Water Science and Technology, 63(4), 811–817. doi:10.2166/wst.2011.324 CR - Bergmans B. (2011). Struvite Recovery from Digested Sludge. Thesis Master of Science in Civil Engineering. Delft University, Delft, Netherlands. CR - Blöcher, C., Niewersch, C., & Melin, T. (2012). Phosphorus recovery from sewage sludge with a hybrid process of low pressure wet oxidation and nanofiltration. Water Research, 46(6), 2009–2019. https://doi.org/10.1016/j.watres.2012.01.022 CR - Britton, A., Koch, F. A., Mavinic, D. S., Adnan, A., Oldham, W. K., & Udala, B. (2005). Pilot-scale struvite recovery from anaerobic digester supernatant at an enhanced biological phosphorus removal wastewater treatment plant. Journal of Environmental Engineering and Science, 4(4), 265–277. https://doi.org/10.1139/s04-059 CR - Cao, J., Wu, Y., Zhao, J., Jin, S., Aleem, M., Zhang, Q., & Fang, F. (2019). Bioresource Technology Phosphorus recovery as vivianite from waste activated sludge via optimizing iron source and pH value during anaerobic fermentation. Bioresource Technology, 293(August), 122088. https://doi.org/10.1016/j.biortech.2019.122088 CR - Chen, Y., Lin, H., Yan, W., Huang, J., Wang, G., & Shen, N. (2019). Bioresource Technology Alkaline fermentation promotes organics and phosphorus recovery from polyaluminum chloride-enhanced primary sedimentation sludge. Bioresource Technology, 294(September), 122160. https://doi.org/10.1016/j.biortech.2019.122160 CR - Chrispim, M. C., Scholz, M., & Nolasco, M. A. (2019). Phosphorus recovery from municipal wastewater treatment: Critical review of challenges and opportunities for developing countries. Journal of Environmental Management, 248(July), 109268. https://doi.org/10.1016/j.jenvman.2019.109268 CR - Cieślik, B., & Konieczka, P. (2017). A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods. Journal of Cleaner Production, 142, 1728–1740. https://doi.org/10.1016/j.jclepro.2016.11.116 CR - Cordell, D., Drangert, J. O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19(2), 292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009 CR - Cooper, J., Lombardi, R., Boardman, D., & Carliell-marquet, C. (2011). Resources , Conservation and Recycling The future distribution and production of global phosphate rock reserves. “Resources, Conservation & Recycling,” 57(January), 78–86. https://doi.org/10.1016/j.resconrec.2011.09.009 CR - De Boer, M. A., Romeo-Hall, A. G., Rooimans, T. M., & Slootweg, J. C. (2018). An assessment of the drivers and barriers for the deployment of urban phosphorus recovery technologies: A case study of the Netherlands. Sustainability (Switzerland), 10(6), 1–19. https://doi.org/10.3390/su10061790 CR - De Boer, M.A.; Wolzak, L.; Slootweg, J.C. (2019). Phosphorus: Reserves, Production, and Applications. In Phosphorus Recovery and Recycling; Springer: Singapore, 2019; pp. 75–100; ISBN 9789811080319. CR - Desmidt, E., Ghyselbrecht, K., Zhang, Y., Pinoy, L., Van Der Bruggen, B., Verstraete, W., Rabaey, K., & Meesschaert, B. (2015). Global phosphorus scarcity and full-scale P-recovery techniques: A review. Critical Reviews in Environmental Science and Technology, 45(4), 336–384. https://doi.org/10.1080/10643389.2013.866531 CR - Donatello, S., Tong, D., & Cheeseman, C. R. (2010). Production of technical grade phosphoric acid from incinerator sewage sludge ash (ISSA). Waste Management, 30(8–9), 1634–1642. https://doi.org/10.1016/j.wasman.2010.04.009 CR - EC. (2019). Regulation (EU) 2019/1009 of the European Parliament and of the council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending regulations (EC) no 1069/2009 and (EC) no 1107/2009 and repealing regulation (EC) no 2003/2003 (text with EEA relevance). European Parlia- ment. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R1009: CR - Egle, L., Rechberger, H., Krampe, J., & Zessner, M. (2016). Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Science of the Total Environment, 571, 522–542. https://doi.org/10.1016/j.scitotenv.2016.07.019 CR - Egle, Lukas, Rechberger, H., & Zessner, M. (2015). Overview and description of technologies for recovering phosphorus from municipal wastewater. Resources, Conservation and Recycling, 105, 325–346. https://doi.org/10.1016/j.resconrec.2015.09.016 CR - Gell, K., Ruijter, F. J. d., Kuntke, P., Graaff, M. de, & Smit, A. L. (2011). Safety and Effectiveness of Struvite from Black Water and Urine as a Phosphorus Fertilizer. Journal of Agricultural Science, 3(3), 67–80. https://doi.org/10.5539/jas.v3n3p67 CR - Ghosh, S., Lobanov, S., & Lo, V. K. (2020). Chemical Engineering and Processing - Process Intensification Investigation of the impact of hydrodynamic parameters for phosphorus recovery from synthetic anaerobic digester supernatant in a fluidized bed reactor. Chemical Engineering and Processing - Process Intensification, 157(June), 108155. https://doi.org/10.1016/j.cep.2020.108155 CR - Gundlach, J., Bryla, M., Larsen, T. A., Kristoferitsch, L., Gründl, H., & Holzner, M. (2021). Novel NoMix toilet concept for efficient separation of urine and feces and its design optimization using computational fluid mechanics. Journal of Building Engineering, 33(March 2020), 101500. https://doi.org/10.1016/j.jobe.2020.101500 CR - Gutierrez, F., Kinney, K. A., & Katz, L. E. (2020). Phosphorus speciation in municipal wastewater solids and implications for phosphorus recovery. Environmental Engineering Science, 37(5), 316–327. https://doi.org/10.1089/ees.2019.0360 CR - Heinzmann, B., Engel, G. (2003). Phosphorus Recycling in Treatment Plants with Biological Phosphorus Removal. Seminar German Federal Environment Ministry/RWTH Aachen. “Recovery of phosphorus in land management and from water and wastes” , 6–7 February 2003, Berlin. CR - International Biochar Initiative (IBI). (2015). Standardized Product Definition and Product Testing Guidelines for Biochar that Is Used in Soil (version number 2.1) CR - Irwin, J., & Forrester, L. (2019). Urine collection practices in a small rural hospital: Evaluation of alignment with antimicrobial stewardship guidelines. Canadian Journal of Infection Control, 34(1), 35–40. https://doi.org/10.36584/cjic.2019.005 CR - Johir, M. A. H., George, J., Vigneswaran, S., Kandasamy, J., & Grasmick, A. (2011). Removal and recovery of nutrients by ion exchange from high rate membrane bio-reactor (MBR) effluent. Desalination, 275(1–3), 197–202. https://doi.org/10.1016/j.desal.2011.02.054 CR - Jupp, A. R., Beijer, S., Narain, G. C., Schipper, W., & Slootweg, J. C. (2021). Phosphorus recovery and recycling-closing the loop. Chemical Society Reviews, 50(1), 87–101. https://doi.org/10.1039/d0cs01150a CR - Kalaitzidou, K., Mitrakas, M., Raptopoulou, C., Tolkou, A., Palasantza, P. A., & Zouboulis, A. (2016). Pilot-Scale Phosphate Recovery from Secondary Wastewater Effluents. Environmental Processes, 3, 5–22. https://doi.org/10.1007/s40710-016-0139-1 CR - Kang, S. K., Choo, K. H., & Lim, K. H. (2003). Use of iron oxide particles as adsorbans to enhance phosphorus removal from secondary wastewater effluent. Separation Science and Technology, 38(15), 3853–3874. https://doi.org/10.1081/SS-120024236 CR - Kirchmann, H., & Pettersson, S. (1994). Human urine - Chemical composition and fertilizer use efficiency. Fertilizer Research, 40(2), 149–154. https://doi.org/10.1007/BF00750100 CR - Leong, H. Y., Chang, C. K., Khoo, K. S., Chew, K. W., Chia, S. R., Lim, J. W., Chang, J. S., & Show, P. L. (2021). Waste biorefinery towards a sustainable circular bioeconomy: a solution to global issues. Biotechnology for Biofuels, 14(1), 1–15. https://doi.org/10.1186/s13068-021-01939-5 CR - Liberti, L., Petruzzelli, D., & De Florio, L. (2001). Rem nut ion exchange plus struvite precipitation process. Environmental Technology (United Kingdom), 22(11), 1313 1324.https://doi.org/10.1080/09593330409355443 CR - Liu, H., Hu, G., Basar, I. A., Li, J., Lyczko, N., Nzihou, A., & Eskicioglu, C. (2021). Phosphorus recovery from municipal sludge-derived ash and hydrochar through wet-chemical technology: A review towards sustainable waste management. Chemical Engineering Journal, 417(January), 129300. https://doi.org/10.1016/j.cej.2021.129300 CR - Liu, R., Wang, Y., Wu, G., Luo, J., & Wang, S. (2017). Development of a selective electrodialysis for nutrient recovery and desalination during secondary effluent treatment. Chemical Engineering Journal, 322, 224–233. https://doi.org/10.1016/j.cej.2017.03.149 CR - Luyckx, L., & Van Caneghem, J. (2021). Recovery of phosphorus from sewage sludge ash: Influence of incineration temperature on ash mineralogy and related phosphorus and heavy metal extraction. Journal of Environmental Chemical Engineering, 9(6), 106471. https://doi.org/10.1016/j.jece.2021.106471 CR - Ma, J., Yang, R., Yu, X., Zhao, Y., Sang, Q., Wang, F., & Chen, Y. (2020). Investigation of anaerobic side-stream phosphorus recovery and its effect on the performance of mainstream EBPR subjected to low-consumption. Water Science and Technology. doi:10.2166/wst.2020.014 CR - Ma, P., & Rosen, C. (2021). Land application of sewage sludge incinerator ash for phosphorus recovery: A review. Chemosphere, 274, 129609. https://doi.org/10.1016/j.chemosphere.2021.129609 CR - Maurer, M., & Gujer, W. (1999). Kinetics of biologically induced phosphorus precipitation in wastewater treatment. Water Research. 33(2), 484–493. CR - Mavinic, D. S., Koch, F. A., Huang, H., & Lo, K. V. (2007). Phosphorus recovery from anaerobic digester supernatants using a pilot-scale struvite crystallization process. Journal of Environmental Engineering and Science, 6(5), 561–571. https://doi.org/10.1139/S07-007 CR - Metcalf, I., Eddy, H., (2003). Wastewater Engineering: Treatment and Reuse. McGraw- Hill, New York. CR - Meyer, C., Preyl, V., Steinmetz, H., Maier, W., Mohn, R.-E., Schönberger H., Piersson, T. (2018): The Stuttgart Process. In: Schaum, Chr. (editor) Phosphorus: Polluter and Resource of the Future: Removal and Recovery fromWastewater, IWA Publishing, ISBN13: 9781780408354, eISBN: 9781780408361. CR - Midorikawa, I., Aoki, H., Omori, A., Shimizu, T., Kawaguchi, Y., Kassai, K., & Murakami, T. (2008). Recovery of high purity phosphorus from municipal wastewater secondary effluent by a high-speed adsorban. 1601–1608. https://doi.org/10.2166/wst.2008.537 CR - Moreno, J., & Espada, J. J. (2020). treatment systems for sludge. In Wastewater Treatment Residues as Resources for Biorefinery Products and Energy. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816204-0.00010-2 CR - Muys, M., Phukan, R., Brader, G., Samad, A., Moretti, M., Haiden, B., Pluchon, S., Roest, K., Vlaeminck, S. E., & Spiller, M. (2021). A systematic comparison of commercially produced struvite: Quantities, qualities and soil-maize phosphorus availability. Science of the Total Environment, 756, 143726. https://doi.org/10.1016/j.scitotenv.2020.143726 CR - Münch, E.V., Barr, K., 2001. Controlled struvite crystallisation for removing phos- phorus from anaerobic digester sidestreams. Water Res. 35 (1), 151e159. CR - Naji F., Drenkova-Tuhtan A., Rapf M., Meyer C., Steinmetz H., Kranert M. (2016). Phosphorus recovery from wastewater, sewage sludge and sewage sludge ash. Indo-German Conference on Sustainability. DOI: 10.13140/RG.2.1.3427.8166. CR - Nättorp, A., Remmen, K., & Remy, C. (2017). Cost assessment of different routes for phosphorus recovery from wastewater using data from pilot and production plants. Water Science and Technology, 76(2), 413–424. https://doi.org/10.2166/wst.2017.212 CR - Neczaj, E., & Grosser, A. (2018). Circular Economy in Wastewater Treatment Plant – Challenges and Barriers†.https://doi.org/10.3390/proceedings2110614 CR - Nieminen, J. (2010). Phosphorus recovery and recycling from municipal wastewater sludge. A Master of Science thesis Submitted for inspection in Espoo. CR - Nir, O., Sengpiel, R., & Wessling, M. (2018). Closing the cycle: Phosphorus removal and recovery from diluted effluents using acid resistive membranes. Chemical Engineering Journal, 346(March), 640–648. https://doi.org/10.1016/j.cej.2018.03.181 CR - Ohura, S., Harada, H., Biswas, B. K., Kondo, M., Ishikawa, S., Kawakita, H., Ohto, K., & Inoue, K. (2011). Phosphorus recovery from secondary effluent and side-stream liquid in a sewage treatment plant using zirconium-loaded saponified orange waste. Journal of Material Cycles and Waste Management, 13(4), 293–297. https://doi.org/10.1007/s10163-011-0029-6 CR - Ortwein, B. (2018). AirPrex® sludge optimization and struvite recovery from digested sludge in Phosphorus: Polluter and Resource of the Future. IWA Publishing. Chapter17.https://doi.org/10.2166/9781780408361_343. CR - Ott, C., & Rechberger, H. (2012). The European phosphorus balance. Resources, Conservation and Recycling, 60, 159–172. https://doi.org/10.1016/j.resconrec.2011.12.007 CR - Öztürk İ., Şeker., M. (2021). Marmara Denizi'nin Ekolojisi: Deniz salyası oluşumu etkileşimleri ve çözüm önerileri, Türkiye Bilimler Akademisi. ISBN: 978-605-2249-73-4 CR - Pacurariu, R. L., Vatca, S. D., Lakatos, E. S., Bacali, L., & Vlad, M. (2021). A critical review of eu key indicators for the transition to the circular economy. International Journal of Environmental Research and Public Health, 18(16). https://doi.org/10.3390/ijerph18168840 CR - Perera, M. K., Englehardt, J. D., & Dvorak, A. C. (2019). Technologies for Recovering Nutrients from Wastewater: A Critical Review. Environmental Engineering Science, 36(5), 511–529. https://doi.org/10.1089/ees.2018.0436 CR - Petzet, S., Peplinski, B., Bodkhe, S. Y., & Cornel, P. (2011). Recovery of phosphorus and aluminium from sewage sludge ash by a new wet chemical elution process (SESAL-Phos-recovery process). Water Science and Technology, 64(3), 693–699. https://doi.org/10.2166/wst.2011.682 CR - Petzet, S., Peplinski, B., & Cornel, P. (2012). On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water Research, 46(12), 3769–3780. https://doi.org/10.1016/j.watres.2012.03.068 CR - Pott, R., Johnstone-robertson, M., & Verster, B. (2018). Wastewater Biorefineries : Integrating Water Treatment and Value Recovery Wastewater Biore fi neries : Integrating Water Treatment and Value Recovery. November 2020. https://doi.org/10.1007/978-3-319-63612-2 CR - Ribarova, I., Dimitrova, S., Lambeva, R., Wintgens, T., Stemann, J., & Remmen, K. (2017). Phosphorus recovery potential in Sofia WWTP in view of the national sludge management strategy. Resources, Conservation and Recycling, 116, 152–159. https://doi.org/10.1016/j.resconrec.2016.10.003 CR - Saerens, B., Geerts, S., & Weemaes, M. (2021). Phosphorus recovery as struvite from digested sludge – experience from the full scale. Journal of Environmental Management, 280(February 2020), 111743. https://doi.org/10.1016/j.jenvman.2020.111743 CR - Salehi, S., Yu, K., Heitz, A., & Ginige, M. P. (2018). Re-visiting the Phostrip process to recover phosphorus from municipal wastewater. Chemical Engineering Journal, 343(December 2017), 390–398. https://doi.org/10.1016/j.cej.2018.02.074 CR - Semerci, N., Ahadi S., Coşgun S. (2021). Comparison of dried sludge and sludge ash for phosphorus recovery with acidic and alkaline leaching. 359–370. https://doi.org/10.1111/wej.12633 CR - Schaum, C. (2018). Phosphorus: Polluter and Resource of the Future - Removal and Recovery from Wastewater. Water Intelligence Online, 17, 9781780408361. https://doi.org/10.2166/9781780408361 CR - Schroder, J. J., Cordell, D., Smit, A. L., & Rosemarin, A. (October 2010). Sustainable use of phosphorous. Plant Research International, Retrieved from http://ec.europa.eu/environment/natres/pdf/sustainable_use_phosphorus.pdf CR - Schütte, T., Niewersch, C., Wintgens, T., & Yüce, S. (2015). Phosphorus recovery from sewage sludge by nanofiltration in diafiltration mode. Journal of Membrane Science, 480, 74–82. https://doi.org/10.1016/j.memsci.2015.01.013 CR - Shu, L., Schneider, P., Jegatheesan, V., & Johnson, J. (2006). An economic evaluation of phosphorus recovery as struvite from digester supernatant. Bioresource Technology, 97(17), 2211–2216. https://doi.org/10.1016/j.biortech.2005.11.005 CR - Smit, A.L., Bindraban, P.S., Schröder, J.J., Conjin, J.G., Meer, H.G. (2009). Phosphorus in agriculture: global resources, trends and developments. Plant Research International B.V., Wageningen Report 282. CR - Simha, P., Karlsson, C., Viskari, E. L., Malila, R., & Vinnerås, B. (2020). Field Testing a Pilot-Scale System for Alkaline Dehydration of Source-Separated Human Urine: A Case Study in Finland. Frontiers in Environmental Science, 8(September), 1–10. https://doi.org/10.3389/fenvs.2020.570637 CR - Singh, R. P., & Agrawal, M. (2008). Potential benefits and risks of land application of sewage sludge. 28, 347–358. https://doi.org/10.1016/j.wasman.2006.12.010 CR - Soares, A., Czajkowska, J., Colprim, J., Gali, A., Johansson, S., Masic, A., Marchi, A., McLeod, A., Nenov, V., Ruscalleda, M., & Siwiec, T. (2017). Nutrients recovery from wastewater streams. Innovative Wastewater Treatment & Resource Recovery Technologies: Impacts on Energy, Economy and Environment, 369–398. https://doi.org/10.2166/9781780407876_0369 CR - Stitt B., Goss T., Moncholi M., Abu-Orf M., Diaz I. (2017) Enhanced Dewatering with Struvite Recovery: Pilot Testing of AirPrex® Technology at Miami’s South District WWTP. Proceedings of the Water Environment Federation · January 2017, 139-154. CR - Tchobanoglous, G., Burton, F.L., Stensel, H.D., Tsuchihashi, R., Burton, F. (2014). Wastewater Engineering: Treatment and Resource Recovery, 5th Edition, Metcalf & Eddy Inc., McGraw-Hill, New York, 2014. CR - Thurston, A. (2015). The disappearing nutrient. Nature, 163(4), 310. CR - van der Hoek, J. P., Struker, A., & de Danschutter, J. E. M. (2017). Amsterdam as a sustainable European metropolis: integration of water, energy and material flows. Urban Water Journal, 14(1), 61–68. https://doi.org/10.1080/1573062X.2015.1076858 CR - Vanotti M.B., Dube P.J., Szogi A.A., Garcia-Gonzalez M.C. (2017). Recovery of ammonia and production of high-grade phosphates from side stream digester effluents using gas permeable membranes, in Lecture notes in civil engineering, Springer. ISSN 2366-2565. CR - Vasenko, L., Bonnemain-fernandes, A., Malwade, C., & Qu, H. (2020). Environmental Science Water Research & Technology via a two-step process of ozonation and. 817–828. https://doi.org/10.1039/c9ew00994a CR - Verster, B., Minnaar, S., & Cohen, B. (2014). Introducing the Wastewater Biorefinery Concept: A scoping study of poly-glutamic acid production from a Bacillus -rich mixed culture using municipal wastewater. In Water Research Comission (Issue April). https://doi.org/10.13140/RG.2.1.3120.9688 CR - Wei, X., Viadero, R. C., & Bhojappa, S. (2008). Phosphorus removal by acid mine drainage sludge from secondary effluents of municipal wastewater treatment plants. Water Research, 42(13), 3275–3284. https://doi.org/10.1016/j.watres.2008.04.005 CR - Wei, S. P., van Rossum, F., van de Pol, G. J., & Winkler, M. K. H. (2018). Recovery of phosphorus and nitrogen from human urine by struvite precipitation, air stripping and acid scrubbing: A pilot study. Chemosphere, 212, 1030–1037. https://doi.org/10.1016/j.chemosphere.2018.08.154 CR - World Bank. (2022). World Bank commodity markets data. https://thedocs.worldbank.org/en/doc/5d903e84db1d1b83e0ec8f744e555700350012021/related/CMO-Historical-Data-Annual.xlsx. CR - Xavier LD, Cammarota MC, Yokoyama L, Volschan I (2014) Study of the recovery of phosphorus from struvite precipitation in supernatant line from anaerobic digesters of sludge. Water Sci Technol Water Supply 14:751–757. https://doi.org/10.2166/ws.2014.033 CR - Xia, W. J., Xu, L. Z. J., Yu, L. Q., Zhang, Q., Zhao, Y. H., Xiong, J. R., Zhu, X. Y., Fan, N. S., Huang, B. C., & Jin, R. C. (2020). Conversion of municipal wastewater-derived waste to an adsorbent for phosphorus recovery from secondary effluent. Science of the Total Environment, 705, 135959. https://doi.org/10.1016/j.scitotenv.2019.135959 CR - Xiao-jun, Y., Wen-qing, T., Ying, D., Yu-qi, C., Ya-e, W., Zhi-long, W., & Li, J. (2021). Journal of Water Process Engineering Nutrient removal and phosphorus recovery performance of an anaerobic side-stream extraction based enhanced biological phosphorus removal subjected to low dissolved oxygen. Journal of Water Process Engineering, 42(December 2020), 101861. https://doi.org/10.1016/j.jwpe.2020.101861 CR - Xiao, X., Liu, S., Zhang, X., & Zheng, S. (2017). Phosphorus removal and recovery from secondary effluent in sewage treatment plant by magnetite mineral microparticles. Powder Technology, 306, 68–73. https://doi.org/10.1016/j.powtec.2016.10.066 CR - Xie, M., Nghiem, L. D., Price, W. E., & Elimelech, M. (2014). Toward Resource Recovery from Wastewater: Extraction of Phosphorus from Digested Sludge Using a Hybrid Forward Osmosis − Membrane Distillation Process. CR - Xu, H., He, P., Gu, W., Wang, G., & Shao, L. (2012). Recovery of phosphorus as struvite from sewage sludge ash. Journal of Environmental Sciences, 24(8), 1533–1538.https://doi.org/10.1016/S1001-0742(11)60969-8 CR - Yu, B., Luo, J., Xie, H., Yang, H., Chen, S., Liu, J., Zhang, R., & Li, Y. (2021). Species , fractions , and characterization of phosphorus in sewage sludge : A critical review from the perspective of recovery. Science of the Total Environment, 786, 147437. https://doi.org/10.1016/j.scitotenv.2021.147437 CR - Zoboli, O., Zessner, M., & Rechberger, H. (2016). Science of the Total Environment Supporting phosphorus management in Austria : Potential , priorities and limitations. Science of the Total Environment, 565, 313–323. https://doi.org/10.1016/j.scitotenv.2016.04.171 UR - https://dergipark.org.tr/tr/pub/itucis/issue//1090638 L1 - https://dergipark.org.tr/tr/download/article-file/2321245 ER -